
Video and Image Processing Blockset™ 3
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Video and Image Processing Blockset™ User’s Guide

© COPYRIGHT 2004–2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
July 2004 First printing New for Version 1.0 (Release 14)
October 2004 Second printing Revised for Version 1.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 1.1 (Release 14SP2)
September 2005 Online only Revised for Version 1.2 (Release 14SP3)
November 2005 Online only Revised for Version 2.0 (Release 14SP3+)
March 2006 Online only Revised for Version 2.1 (Release 2006a)
September 2006 Online only Revised for Version 2.2 (Release 2006b)
March 2007 Online only Revised for Version 2.3 (Release 2007a)
September 2007 Online only Revised for Version 2.4 (Release 2007b)
March 2008 Online only Revised for Version 2.5 (Release 2008a)
October 2008 Online only Revised for Version 2.6 (Release 2008b)
March 2009 Online only Revised for Version 2.7 (Release 2009a)
September 2009 Online only Revised for Version 2.8 (Release 2009b)
March 2010 Online only Revised for Version 3.0 (Release 2010a)

Contents

Getting Started

1
Product Overview . 1-2

Installation . 1-3
Installing the Video and Image Processing Blockset
Software . 1-3

Required Products . 1-4
Related Products . 1-4

Product Demos . 1-5
Demos in the Help Browser . 1-5
Demos on the Web . 1-9
Demos on MATLAB Central . 1-10

Working with the Documentation 1-11
Viewing the Documentation . 1-11
Printing the Documentation . 1-12
Using This Guide . 1-12

Key Blockset Concepts . 1-15
Image Types . 1-15
Video in the Video and Image Processing Blockset
Blocks . 1-16

Defining Intensity and Color . 1-16
Color Image Processing . 1-17
Coordinate Systems . 1-24
Image Data Stored in Column-Major Format 1-26
Sample Time . 1-26
Video Duration and Simulation Time 1-27
Acceleration Modes . 1-28
Strategies for Real-Time Video Processing 1-29
Code Generation . 1-31

Block Data Type Support . 1-33

v

Image Credits . 1-34

Importing and Exporting Images and Video

2
Batch Processing Image Files . 2-2

Working with Live Video . 2-7

Working with Multimedia Files . 2-8
Blocks That Support Multimedia Files 2-8
Importing and Viewing Multimedia Files 2-8
Exporting to Multimedia Files . 2-11
Working with AVI Files . 2-14
Working with Audio . 2-38

Working with MATLAB Workspace Variables 2-43
How to Import MATLAB Workspace Variables 2-43

Viewing Video

3
Viewing Video Files . 3-2

Viewing Video Signals in Simulink 3-3
Using the Video Viewer Block . 3-3
Using the To Video Display Block . 3-3
Using the MPlay GUI . 3-3

Viewing Video File Frames . 3-22

vi Contents

Analysis and Enhancement

4
Feature Extraction . 4-2
Finding Edges in Images . 4-2
Finding Lines in Images . 4-9
Measuring an Angle Between Lines 4-18

Image Enhancement . 4-30
Sharpening and Blurring an Image 4-30
Removing Salt and Pepper Noise from Images 4-39
Removing Periodic Noise from Video 4-45
Adjusting the Contrast in Intensity Images 4-54
Adjusting the Contrast in Color Images 4-61

Template Matching . 4-67
Using the Template Matching Block 4-67
Video Stabilization . 4-71
Panorama Creation . 4-72

Pixel Statistics . 4-73
Blocks That Compute Pixel Statistics 4-73
Finding the Histogram of an Image 4-73

Conversions

5
Intensity to Binary Conversion . 5-2
Overview of Intensity and Binary Images 5-2
Thresholding Intensity Images Using Relational
Operators . 5-2

Thresholding Intensity Images Using the Autothreshold
Block . 5-7

Color Space Conversion . 5-14
Overview of Color Space Conversion Block 5-14
Converting Color Information from R’G’B’ to Intensity . . . 5-14

vii

Chroma Resampling . 5-19

Geometric Transformation

6
Geometric Transformation Interpolation Methods 6-2
Overview of Interpolation Methods 6-2
Nearest Neighbor Interpolation . 6-2
Bilinear Interpolation . 6-3
Bicubic Interpolation . 6-4

Rotating an Image . 6-6

Resizing an Image . 6-14

Cropping an Image . 6-20

Morphological Operations

7
Overview of Morphology . 7-2

Counting Objects in an Image . 7-3

Correcting for Nonuniform Illumination 7-10

Example Applications

8
Pattern Matching . 8-2
Overview of Pattern Matching . 8-2

viii Contents

Tracking an Object Using Correlation 8-2

Motion Compensation . 8-10

Image Compression . 8-12
Overview of Image Compression . 8-12
Compressing an Image . 8-12
Viewing the Compressed Image . 8-18

Getting Started with System Objects

9
What Are System Objects? . 9-2

Setting Up and Running System Objects 9-3
Creating an Instance of a System Object 9-3
Using Methods to Run System Objects 9-6
Finding Help and Demos for System Objects 9-8

Using System Objects with the Embedded MATLAB
Subset . 9-9
Considerations for Using System Objects with the
Embedded MATLAB Subset . 9-9

Using System Objects with Embedded MATLAB Coder . . 9-11
Using System Objects with the Embedded MATLAB
Function Block . 9-12

Using System Objects with Embedded MATLAB MEX . . . 9-12

Using Video and Image Processing System
Objects

10
What Are Video and Image Processing System
Objects? . 10-2

ix

Generating Code for Video and Image Processing
System Objects . 10-3

Working with Fixed-Point Data . 10-5
Working with Fixed-Point Data . 10-5

Example: Using System Objects in Video and Image
Processing Applications: Marking a Region of
Interest . 10-9

Index

x Contents

1

Getting Started

The Video and Image Processing Blockset™ software is a tool for processing
images and video in the Simulink® environment. This chapter provides an
introduction to the Video and Image Processing Blockset software, its product
requirements, and its documentation.

• “Product Overview” on page 1-2

• “Installation” on page 1-3

• “Product Demos” on page 1-5

• “Working with the Documentation” on page 1-11

• “Key Blockset Concepts” on page 1-15

• “Block Data Type Support” on page 1-33

• “Image Credits” on page 1-34

1 Getting Started

Product Overview
Video and Image Processing Blockset provides algorithms and tools for the
design and simulation of video processing, image processing, and computer
vision systems. You can process video and image data to solve problems
such as noise, low contrast, out-of-focus optics, and artifacts resulting from
interlaced video. You can then perform tasks such as motion analysis, object
detection and tracking, video stabilization, and disparity estimation for stereo
vision. Most algorithms and tools are available as both System objects (for
use in MATLAB®) and blocks (for use in Simulink®).

Tools for multimedia file I/O, video display, drawing graphics, and compositing
enable you to visualize, simulate, and evaluate design alternatives. For
embedded system design and rapid prototyping, the blockset supports
fixed-point arithmetic, C-code generation, and implementation on embedded
hardware.

1-2

Installation

Installation

In this section...

“Installing the Video and Image Processing Blockset Software” on page 1-3

“Required Products” on page 1-4

“Related Products” on page 1-4

Installing the Video and Image Processing Blockset
Software
Before you begin working with theVideo and Image Processing Blockset
software, you need to install the product on your computer.

Installation from a DVD
Video and Image Processing Blockset blocks follow the same installation
procedure as the MATLAB® toolboxes:

1 Start the MathWorks™ installer.

2 When prompted, select the Product check boxes for the products you
want to install.

The documentation is installed along with the products.

Installation from a Web Download
You can use your MathWorks Account to download products from the
MathWorks Web site:

1 Navigate to http://www.mathworks.com/web_downloads/.

2 Click Download products.

3 Log in to the system using your MathWorks Account e-mail and password.
If you do not have a MathWorks Account, you can create one from this
Web page.

4 Select your platform and the products you want to install.

1-3

http://www.mathworks.com/web_downloads/

1 Getting Started

5 Follow the instructions on the Download and Install screen, which
describe how to download the product(s) and the installer.

6 Double-click the Installer.exe file to run the installer.

7 When prompted, enter your Personal License Password.

8 Select the Product check boxes for the products you want to install.

The documentation is installed along with the products.

Required Products
The Video and Image Processing Blockset software is part of a
family of products from The MathWorks™. You need to install
several products to use the Video and Image Processing Blockset
software. For more information, see the MathWorks Web site at
http://www.mathworks.com/products/viprocessing/requirements.jsp.

Related Products
The MathWorks provide several products that are relevant to the kinds of
tasks you can perform with the Video and Image Processing Blockset software.

For more information about any of these products, see either

• The online documentation for that product if it is installed on your system

• The MathWorks Web site, at
http://www.mathworks.com/products/viprocessing/related.jsp

1-4

http://www.mathworks.com/products/viprocessing/requirements.jsp
http://www.mathworks.com/products/viprocessing/related.jsp

Product Demos

Product Demos

In this section...

“Demos in the Help Browser” on page 1-5

“Demos on the Web” on page 1-9

“Demos on MATLAB Central” on page 1-10

Demos in the Help Browser
You can find interactive Video and Image Processing Blockset demos in the
MATLAB Help browser. This example shows you how to locate and open a
typical demo:

1 To open the Help browser to the Demos tab, type doc at the MATLAB
command line.

2 Expand the Video and Image Processingnode in the Help browser, then
the Demos node.

1-5

1 Getting Started

There are two entries under the Video and Image Processing Blockset
Demos node:

• Simulink Demos — Expand this entry to see a categorical list of
block-based Video and Image Processing Blockset demos.

• MATLAB Demos— Expand this entry to see a categorical list of Video
and Image Processing Blockset System object demos.

3 To view the description of the Simulink-based Cell Counting demo, which
demonstrates how to extract information from a video stream, expand the
Simulink Demos and Analysis, and then click Cell Counting.

1-6

Product Demos

a Click Open this model to display the Simulink model for Cell Counting
demo. The model window opens.

1-7

1 Getting Started

b Run the model by selecting Start from the Simulation menu in the
model window, or by clicking the start button from the toolbar.

c The Cell Counting demo analyzes a binary video file. You will be
prompted to download the file, if it is unavailable in your folder system.

d The results of the demo appear in the Results graphical window.

4 To view a version of the Cell Counting demo that uses System objects in
MATLAB, expand the MATLAB Demos and Analysis, and then click
Cell Counting

1-8

Product Demos

a Click Open videocellcounting.m in the Editor to display the System
object Cell Counting demo in the MATLAB editor.

b Run the demo by clicking the Run toolbar button). The results of
the demo appear in the Results graphical window.

Demos on the Web
The MathWorks Web site contains demos that show you how to use the
Video and Image Processing Blocksetsoftware. You can find these demos at
http://www.mathworks.com/products/viprocessing/demos.jsp.

1-9

http://www.mathworks.com/products/viprocessing/demos.jsp

1 Getting Started

You can run these demos without having MATLAB or Video and Image
Processing Blockset software installed on your system.

Demos on MATLAB Central
The MATLAB Central website contains files, including demos, contributed
by users and developers of Video and Image Processing Blockset software,
MATLAB, Simulink and other products. Contributors submit their files to
one of a list of categories. You can browse these categories to find submissions
that pertain to Video and Image Processing Blockset software or a specific
problem that you would like to solve. MATLAB Central is located at
http://www.mathworks.com/matlabcentral/.

1-10

http://www.mathworks.com/matlabcentral/

Working with the Documentation

Working with the Documentation

In this section...

“Viewing the Documentation” on page 1-11

“Printing the Documentation” on page 1-12

“Using This Guide” on page 1-12

Viewing the Documentation
You can access the Video and Image Processing Blockset documentation using
files you installed on your system or from the Web using the MathWorks
Web site.

Documentation in the Help Browser
This procedure shows you how to use the MATLAB Help browser to view the
Video and Image Processing Blockset documentation installed on your system:

1 In the MATLAB window, from the Help menu, click Product Help. The
Help browser opens.

2 From the list of products in the left pane, click Video and Image
Processing Blockset. In the right pane, the Help browser displays the
Video and Image Processing Blockset Roadmap page.

3 Under the section titled Documentation Set, select User’s Guide. The
Help browser displays the chapters of this manual.

The Help browser also has a Demos tab where you can view product demos.
For more information, see “Product Demos” on page 1-5.

Documentation on the Web
You can also view the documentation from the MathWorks Web site. The
documentation available on these Web pages is for the latest release,
regardless of whether the release was distributed on a DVD or as a Web
download:

1-11

1 Getting Started

1 Navigate to the Video and Image Processing Blockset Product page at
http://www.mathworks.com/products/viprocessing/.

2 On the right side of the page, click the Documentation link. The Video
and Image Processing Blockset documentation is displayed.

Printing the Documentation
The documentation for the Video and Image Processing Blockset software is
also available in printable PDF format. You need to install Adobe Acrobat
Reader 4.0 or later to open and read these files. To download a free copy of
Acrobat Reader, see http://www.adobe.com/products/acrobat/main.html.

The following procedure shows you how to view the documentation in PDF
format:

1 In the MATLAB window, from the Help menu, click Product Help. The
Help browser opens.

2 From the list of products in the left pane, click Video and Image
Processing Blockset. In the right pane, the Help browser displays the
Video and Image Processing Blockset Roadmap page.

3 Under the Printing the Documentation Set heading, click the links
to view PDF versions of the Video and Image Processing Blockset
documentation.

Using This Guide
To help you effectively read and use this guide, here is a brief description of
the chapters and a suggested reading path.

Expected Background
This manual assumes that you are familiar with the following:

• The MATLAB language, to write scripts and functions with MATLAB code,
and to use functions with the command-line interface

• The Simulink environment, to create simple models as block diagrams
and simulate those models

1-12

http://www.mathworks.com/products/viprocessing/
http://www.adobe.com/products/acrobat/main.html

Working with the Documentation

What Chapter Should I Read?
Follow the procedures in this guide to become familiar with the blockset’s
functionality. The User’s Guide contains tutorial sections that are designed
to help you become familiar with using the Simulink and Video and Image
Processing Blockset software:

• Read Chapter 1, “Getting Started” to learn about the installation process,
the products required to run Video and Image Processing Blockset blocks,
and to view the Video and Image Processing Blockset demos.

• Read Chapter 2, “Importing and Exporting Images and Video” to
understand how video is interpreted by the Simulink blocks. Also, learn
how to bring video data into a model, display it on your monitor, and export
it to an AVI file.

• Read Chapter 3, “Viewing Video” to learn how to use the MPlay GUI to
view videos that are represented as variables in the MATLAB workspace.
You can also learn how to use it to view video files or video signals in
Simulink models.

• Read Chapter 5, “Conversions” to learn how to convert an intensity image
to a binary image, how to convert color information between color spaces,
and how to downsample the chroma components of an image.

• Read Chapter 6, “Geometric Transformation” to understand how blocks in
the Geometric Transformations library interpolate values. You also learn
how to rotate, resize, and crop images.

• Read Chapter 7, “Morphological Operations” to learn about morphological
operations and which blocks can be used to perform them. For example,
you learn how to count objects in an image and correct for nonuniform
illumination.

• Read Chapter 4, “Analysis and Enhancement” to learn how to sharpen,
blur, and remove noise from images. You also learn how to find object
boundaries and calculate the histogram of the R, G, and B values in an
image.

• Read Chapter 8, “Example Applications” to learn how to track the motion
of an object in a video stream. Also, learn more about motion compensation
and image compression.

1-13

1 Getting Started

For a description of each block’s operation, parameters, and characteristics, see
the Block Reference in the Video and Image Processing Blockset documentation
on the Web at http://www.mathworks.com/products/viprocessing/ or
in the Help browser.

1-14

http://www.mathworks.com/products/viprocessing/

Key Blockset Concepts

Key Blockset Concepts

In this section...

“Image Types” on page 1-15

“Video in the Video and Image Processing Blockset Blocks” on page 1-16

“Defining Intensity and Color” on page 1-16

“Color Image Processing” on page 1-17

“Coordinate Systems” on page 1-24

“Image Data Stored in Column-Major Format” on page 1-26

“Sample Time” on page 1-26

“Video Duration and Simulation Time” on page 1-27

“Acceleration Modes” on page 1-28

“Strategies for Real-Time Video Processing” on page 1-29

“Code Generation” on page 1-31

Image Types
In the Video and Image Processing Blockset software, images are real-valued
ordered sets of color or intensity data. The blocks interpret input matrices as
images, where each element of the matrix corresponds to a single pixel in the
displayed image. Images can be binary, intensity (grayscale), or RGB. This
section explains how to represent these types of images.

Binary Images
Binary images are represented by a Boolean matrix of 0s and 1s, which
correspond to black and white pixels, respectively.

For more information, see “Binary Images” in the Image Processing Toolbox™
documentation.

1-15

1 Getting Started

Intensity Images
Intensity images are represented by a matrix of intensity values. While
intensity images are not stored with colormaps, you can use a gray colormap
to display them.

For more information, see “Grayscale Images” in the Image Processing
Toolbox documentation.

RGB Images
RGB images are also known as a true-color images. With Video and Image
Processing Blockset blocks, these images are represented by an array,
where the first plane represents the red pixel intensities, the second plane
represents the green pixel intensities, and the third plane represents the blue
pixel intensities. In the Video and Image Processing Blockset software, you
can pass RGB images between blocks as three separate color planes or as
one multidimensional array.

For more information, see “Truecolor Images” in the Image Processing
Toolbox documentation.

Video in the Video and Image Processing Blockset
Blocks
Video data is a series of images over time. Video in binary or intensity format
is a series of single images. Video in RGB format is a series of matrices
grouped into sets of three, where each matrix represents an R, G, or B plane.

Defining Intensity and Color
The values in a binary, intensity, or RGB image can be different data types.
The data type of the image values determines which values correspond to
black and white as well as the absence or saturation of color. The following
table summarizes the interpretation of the upper and lower bound of each
data type. To view the data types of the signals at each port, from the Format
menu, point to Port/Signal Displays, and select Port Data Types.

1-16

Key Blockset Concepts

Data Type
Black or Absence of
Color

White or Saturation
of Color

Fixed point Minimum data type
value

Maximum data type
value

Floating point 0 1

Note The Video and Image Processing Blockset software considers any data
type other than double-precision floating point and single-precision floating
point to be fixed point.

For example, for an intensity image whose image values are 8-bit unsigned
integers, 0 is black and 255 is white. For an intensity image whose image
values are double-precision floating point, 0 is black and 1 is white. For an
intensity image whose image values are 16-bit signed integers, -32768 is
black and 32767 is white.

For an RGB image whose image values are 8-bit unsigned integers, 0 0 0
is black, 255 255 255 is white, 255 0 0 is red, 0 255 0 is green, and 0 0 255
is blue. For an RGB image whose image values are double-precision
floating point, 0 0 0 is black, 1 1 1 is white, 1 0 0 is red, 0 1 0 is green,
and 0 0 1 is blue. For an RGB image whose image values are 16-bit
signed integers, -32768 -32768 -32768 is black, 32767 32767 32767 is
white, 32767 -32768 -32768 is red, -32768 32767 -32768 is green, and
-32768 -32768 32767 is blue.

Color Image Processing
The Video and Image Processing Blockset software enables you to work with
color images and video signals as multidimensional arrays. For example,
the following model passes a color image from a source block to a sink block
using a 384-by-512-by-3 array.

1-17

1 Getting Started

1-18

Key Blockset Concepts

You can choose to process the image as a multidimensional array by setting
the Image signal parameter to One multidimensional signal in the Image
From File block dialog box.

1-19

1 Getting Started

The blocks that support multidimensional arrays meet at least one of the
following criteria:

• They have the Image signal parameter on their block mask.

• They have a note in their block reference pages that says, “This block
supports intensity and color images on its ports.”

• Their input and output ports are labeled “Image”.

You can also choose to work with the individual color planes of images or
video signals. For example, the following model passes a color image from a
source block to a sink block using three separate color planes.

1-20

Key Blockset Concepts

1-21

1 Getting Started

To process the individual color planes of an image or video signal, set the
Image signal parameter to Separate color signals in both the Image
From File and Video Viewer block dialog boxes.

1-22

Key Blockset Concepts

Note The ability to output separate color signals is a legacy option. It is
recommend that you use multidimensional signals to represent color data.

If you are working with a block that only outputs multidimensional arrays,
you can use the Selector block to separate the color planes. For an example of
this process, see “Measuring an Angle Between Lines” on page 4-18. If you are

1-23

1 Getting Started

working with a block that only accepts multidimensional arrays, you can use
the Matrix Concatenation block to create a multidimensional array. For an
example of this process, see “Finding the Histogram of an Image” on page 4-73.

Coordinate Systems
You can specify locations in images using various coordinate systems. This
topic discusses pixel coordinates and spatial coordinates, which are the two
main coordinate systems used in the Video and Image Processing Blockset
software.

Pixel Coordinates
Pixel coordinates enable you to specify locations in images. In this coordinate
system, the image is treated as a grid of discrete elements, ordered from top
to bottom and left to right, as shown in the following figure:

�

�

�

�

�

�

�

�

For pixel coordinates, the first component r (the row) increases downward,
while the second component c (the column) increases to the right. Pixel
coordinates are integer values and range from 0 to the length of the row or

1-24

Key Blockset Concepts

column. The pixel coordinates used in Video and Image Processing Blockset
software are zero based, while the pixel coordinates used by Image Processing
Toolbox and MATLAB are one based. For more information on the pixel
coordinate system used by Image Processing Toolbox, see “Pixel Coordinates”
in the Image Processing Toolbox documentation.

Spatial Coordinates
Spatial coordinates enable you to specify a location in an image with greater
granularity than pixel coordinates. For example, in the pixel coordinate
system, a pixel is treated as a discrete unit, uniquely identified by an integer
row and column pair, such as (3,4). In a spatial coordinate system, locations
in an image can be represented in terms of partial pixels, such as (3.3, 4.7).
The following figure illustrates the spatial coordinate system used for images:

�

�

�

�

�

�

�

�
���

���

���

���

���

���

	���

	���

This spatial coordinate system corresponds to the pixel coordinate system
in the following ways. First, both are defined in terms of row and column
positions. Second, the spatial coordinates of the center point of any pixel are
identical to the pixel coordinates for that pixel. However, the pixel coordinate
system is discrete, while the spatial coordinate system is continuous. This

1-25

1 Getting Started

means that, in pixel coordinates, the upper-left corner of an image is (0,0),
while in spatial coordinates, this location is (-0.5,-0.5). The spatial coordinate
system used by the Video and Image Processing Blockset software differs
from the one used by Image Processing Toolbox. For more information on this
spatial coordinate system, see “Spatial Coordinates” in the Image Processing
Toolbox documentation.

Image Data Stored in Column-Major Format
The MATLAB technical computing software and Video and Image Processing
Blockset blocks use column-major data organization. The blocks’ data buffers
store data elements from the first column first, then data elements from the
second column second, and so on through the last column.

If you have imported an image or a video stream into the MATLAB workspace
using a function from the MATLAB environment or the Image Processing
Toolbox, the Video and Image Processing Blockset blocks will display this
image or video stream correctly. If you have written your own function or
code to import images into the MATLAB environment, you must take the
column-major convention into account.

Sample Time
Because the Video and Image Processing blocks calculate values directly
rather than solving differential equations, you must configure the Simulink
Solver to behave like a scheduler that uses each block’s sample time to
determine when the code behind the block is executed. The following steps
show you how to do this:

1 From the model’s Simulation menu, select Configuration Parameters.

The Configuration dialog box opens.

2 From the Type list, choose Fixed-step.

3 From the Solver list, choose Discrete (no continuous states).

The following figure shows the correctly configured Configuration dialog
box.

1-26

Key Blockset Concepts

The Solver, while in scheduler mode, uses a block’s sample time to determine
when the code behind each block is executed. For example, if the sample
time of a Video From Workspace block is 0.05, the Solver executes the code
behind this block, and every other block with this sample time, once every
0.05 second.

Video Duration and Simulation Time
The duration of the simulation is controlled by the Stop time parameter —
not the input video. If you want the simulation to run for the duration of the
input video, you must adjust the Stop time parameter. If your video is being
cropped, increase the parameter value. If your video is complete and the
display window is black, decrease the parameter value. To view the first N
frames of your video, set the Stop time parameter to (N-1)*Ts, where Ts is
the sample time of your source block.

You can access the Stop time parameter in the model window, as shown in
the following figure, or on the Solver pane of the Configuration dialog box.

1-27

1 Getting Started

Acceleration Modes
The Simulink software offer Accelerator and Rapid Accelerator
simulation modes that remove much of the computational overhead required
by Simulink models. These modes compile target code of your model. Through
this method, the Simulink environment can achieve substantial performance
improvements for larger models. The performance gains are tied to the size
and complexity of your model. Therefore, large models that contain Video
and Image Processing Blockset blocks run faster in Rapid Accelerator or
Accelerator mode.

To change between Rapid Accelerator, Accelerator, and Normal mode, use
the drop-down list at the top of the model window.

1-28

Key Blockset Concepts

For more information on the accelerator modes in Simulink, see “Accelerating
Models” in the Simulink User’s Guide.

Strategies for Real-Time Video Processing
Video processing is computationally intensive, and the ability to perform
real-time video processing is affected by the following factors:

• Hardware capability

• Model complexity

• Model implementation

• Input data size

Optimizing Your Implementation
Optimizing your implementation is a crucial step toward real-time video
processing. The following tips can help improve the performance of your
model:

1-29

1 Getting Started

• Minimize the number of blocks in your model.

• Process only the regions of interest to reduce the input data size.

• Use efficient algorithms or the simplest version of an algorithm that
achieves the desired result.

• Use efficient block parameter settings. However, you need to decide
whether these settings best suit your algorithm. For example, the most
efficient block parameter settings might not yield the most accurate results.
You can find out more about individual block parameters and their effect
on performance by reviewing specific block reference pages.

The two following examples show settings that make each block’s operation
the least computationally expensive:

- Resize block — Interpolation method = Nearest neighbor

- Blocks that support fixed point — On the Fixed-Point tab, Overflow
mode = Wrap

• Choose data types carefully.

- Avoid data type conversions.

- Use the smallest data type necessary to represent your data to reduce
memory usage and accelerate data processing.

In simulation mode, models with floating-point data types run faster
than models with fixed-point data types. To speed up fixed-point models,
you must run them in accelerator mode. Simulink contains additional
code to process all fixed-point data types. This code affects simulation
performance. After you run your model in accelerator mode or generate
code for your target using Real-Time Workshop, the fixed-point data
types are specific to the choices you made for the fixed-point parameters.
Therefore, the fixed-point model and generated code run faster.

Developing Your Models
Use the following general process guidelines to develop real-time video
processing models to run on embedded targets. By optimizing the model at
each step, you improve its final performance.

1-30

Key Blockset Concepts

1 Create the initial model and optimize the implementation algorithm. Use
floating-point data types so that the model runs faster in simulation mode.
If you are working with a floating-point processor, go to step 3.

2 If you are working with a fixed-point processor, gradually change the model
data types to fixed point, and run the model after every modification.

During this process, you can use data type conversion blocks to isolate
the floating point sections of the model from the fixed-point sections. You
should see a performance improvement if you run the model in accelerator
mode.

3 Remove unnecessary sink blocks, including scopes, and blocks that log
data to files.

4 Compile the model for deployment on the embedded target.

Code Generation
The Video and Image Processing Blockset, Real-Time Workshop®, and
Real-Time Workshop® Embedded Coder™ software enable you to generate
code that you can use to implement your model for a practical application. For
instance, you can create an executable from your Simulink model to run on a
target chip. For more information, see “Understanding Code Generation” in
Signal Processing Blockset Getting Started Guide..

Shared Library Dependencies
For the blocks listed in the table below, copy the shared library files from the
machine where the blockset software is installed to a folder on the system
path of the destination machine.

1-31

1 Getting Started

Block Dependent library
file

Product

To Multimedia File tommfile.dll

SldirectShow.dll

Signal Processing
Blockset™

From Multimedia File frommmfile.dll

SldirectShow.dll

Signal Processing
Blockset

To Video Display tovideodevice.dll

SldirectShow.dll

Video and Image
Processing Blockset

1-32

Block Data Type Support

Block Data Type Support
The Video and Image Processing Blockset Data Type Support Table is
now available through the Simulink model Help menu. The table provides
information about data type support and code generation coverage for all
Video and Image Processing Blockset blocks. Select Help > Block Support
Table> Video and Image Processing Blockset or Help > Block Support
Table > All Tables.

You can also type showvipblockdatatypetable at the MATLAB command
line to bring up the table.

1-33

1 Getting Started

Image Credits
This table lists the copyright owners of the images used in the Video and
Image Processing Blockset documentation.

Image Source

cameraman CopyrightMassachusetts Institute of
Technology. Used with permission.

cell Cancer cell from a rat’s prostate,
courtesy of Alan W. Partin, M.D.,
Ph.D., Johns Hopkins University
School of Medicine.

circuit Micrograph of 16-bit A/D converter
circuit, courtesy of Steve Decker and
Shujaat Nadeem, MIT, 1993.

moon Copyright Michael Myers. Used with
permission.

1-34

2

Importing and Exporting
Images and Video

• “Batch Processing Image Files” on page 2-2

• “Working with Live Video” on page 2-7

• “Working with Multimedia Files” on page 2-8

• “Working with MATLAB Workspace Variables” on page 2-43

2 Importing and Exporting Images and Video

Batch Processing Image Files
A common image processing task is to apply an image processing algorithm
to a series of files. In this example, you import a sequence of images from a
folder into the MATLAB workspace and display the sequence using the Video
and Image Processing Blockset software.

Note In this example, the image files are a set of 10 microscope images of rat
prostate cancer cells. These files are only the first 10 of 100 images acquired.

1 Specify the folder containing the images, and use this information to create
a list of the file names, as follows:

fileFolder = fullfile(matlabroot,'toolbox', ...
'images','imdemos');
dirOutput = dir(fullfile(fileFolder,'AT3_1m4_*.tif'));
fileNames = {dirOutput.name}'

2 View one of the images, using the following command sequence:

I = imread(fileNames{1});
imshow(I);
text(size(I,2),size(I,1)+15, ...

'Image files courtesy of Alan Partin', ...
'FontSize',7,'HorizontalAlignment','right');

text(size(I,2),size(I,1)+25,
'Johns Hopkins University', ...
'FontSize',7,'HorizontalAlignment','right');

2-2

Batch Processing Image Files

3 Use a for loop to create a variable that stores the entire image sequence.
You are going to use this variable to import the sequence into Simulink.

for i = 1:length(fileNames)
my_video(:,:,i) = imread(fileNames{i});

end

4 Create a new Simulink model, and add to it the blocks shown in the
following table.

2-3

2 Importing and Exporting Images and Video

Block Library Quantity

Video FromWorkspace Video and Image
Processing Blockset >
Sources

1

Video Viewer Video and Image
Processing Blockset >
Sinks

1

5 Connect the blocks so your model looks similar to the following figure.

6 Use the Video From Workspace block to import the image sequence into
Simulink. Set the Signal parameter to my_video.

7 Use the Video Viewer block to view the image sequence. Accept the default
parameters.

8 Set the configuration parameters. Open the Configuration dialog box by
selecting Simulation > Configuration Parameters. On the Solver
pane, set the parameters as follows:

• Stop time = 10

• Type = Fixed-step

2-4

Batch Processing Image Files

• Solver = Discrete (no continuous states)

Because the Video From Workspace block’s Sample time parameter is set
to 1 and the Stop time parameter is set to 10, the Video Viewer block
displays 10 images before the simulation stops.

9 Run your model. You can view the image sequence in the Video Viewer
window.

2-5

2 Importing and Exporting Images and Video

For more information on the blocks used in this example, see the Video
From Workspace and Video Viewer block reference pages. For additional
information about batch processing, see the Batch Processing Image Files
Using Distributed Computing demo in Image Processing Toolbox. You can
run this demo by typing ipexbatch at the MATLAB command prompt.

2-6

Working with Live Video

Working with Live Video
Image Acquisition Toolbox provides functions for acquiring images and video
directly into MATLAB and Simulink from PC-compatible imaging hardware.
You can detect hardware automatically, configure hardware properties,
preview an acquisition, and acquire images and video.

See the live video processing demos to view demos that use the Image
Acquisition Toolbox together with Video and Image Processing blocks. To
see the full list of Video and Image Processing demos, type vipdemos at the
MATLAB command prompt.

2-7

2 Importing and Exporting Images and Video

Working with Multimedia Files

In this section...

“Blocks That Support Multimedia Files” on page 2-8

“Importing and Viewing Multimedia Files” on page 2-8

“Exporting to Multimedia Files” on page 2-11

“Working with AVI Files” on page 2-14

“Working with Audio” on page 2-38

Blocks That Support Multimedia Files
The Video and Image Processing Blockset software contain blocks that you
can use to import and export multimedia files. These blocks include the From
Multimedia File block and the To Multimedia File block. If you are working
on a Windows platform, these blocks perform best on platforms with DirectX
Version 9.0 or later and Windows Media Player Version 11 or later. These
blocks also support code generation.

Importing and Viewing Multimedia Files
In this example, you use the From Multimedia File block to import a video
stream into a Simulink model and the To Video Display block to view it. This
procedure assumes you are working on a Windows platform:

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

From Multimedia File Video and Image
Processing Blockset >
Sources

1

To Video Display Video and Image
Processing Blockset >
Sinks

1

2-8

Working with Multimedia Files

2 Locate a multimedia file that you want to import into Simulink. If you
do not have access to a multimedia file, the Video and Image Processing
Blockset software has sample multimedia files you can use to complete
this procedure.

3 Use the From Multimedia File block to import the multimedia file into the
model. Double-click the From Multimedia File block:

• If you do not have your own multimedia file, enter vipmen.avi for the
File name parameter.

• If the multimedia file is on your MATLAB path, enter the filename for
the File name parameter.

• If the file is not on your MATLAB path, use the Browse button to locate
the multimedia file.

• Set the Image signal parameter to Separate color signals.

By default, the Number of times to play file parameter is set to inf. The
model continues to play the file until the simulation stops.

4 Use the To Video Display block to view the multimedia file. Set the Image
signal parameter to Separate color signals.

5 Connect the blocks so your model looks similar to the following figure.

2-9

2 Importing and Exporting Images and Video

6 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. On
the Solver pane, set the parameters as follows:

• Stop time = 20

• Type = Fixed-step

• Solver = Discrete (no continuous states)

7 Run your model.

View your video in the To Video Display window that automatically
appears when you start your simulation. This window closes as soon as
the simulation stops.

Note The video that is displayed in the To Video Display window runs at
the frame rate that corresponds to the input sample time. To run the video
as fast as Simulink processes the video frames, use the Video Viewer block.

You have now imported and displayed a multimedia file in your Simulink
model. In “Exporting to Multimedia Files” on page 2-11, you manipulate your
video stream and export it to a multimedia file. For more information on the
blocks used in this example, see the From Multimedia File and To Video
Display block reference pages in the Video and Image Processing Blockset
Reference. To listen to audio associated with an AVI file, use the To Audio
Device block in Signal Processing Blockset software.

2-10

Working with Multimedia Files

Exporting to Multimedia Files
The Video and Image Processing Blockset blocks enable you to export video
data from your Simulink model. In this section, you use the To Multimedia
File block to export an multimedia file from your model.

1 If the model you created in “Importing and Viewing Multimedia Files” on
page 2-8 is not open on your desktop, you can open an equivalent model
by typing

doc_export2

at the MATLAB command prompt.

2 Click-and-drag the following blocks into your model.

Block Library Quantity

To Multimedia File Video and Image
Processing Blockset >
Sinks

1

Gain Simulink > Math
Operations

3

3 Use the Gain blocks to increase the red, green, and blue values of the video
stream. This increases the contrast of the video. Set the block parameters
as follows:

2-11

2 Importing and Exporting Images and Video

• Main pane, Gain = 1.2

• Signal Attributes pane, Output data type = Inherit: Same as
input

4 Use the To Multimedia File block to export the video to a multimedia file.
Set the block parameters as follows:

• Output file name = my_output.avi

• Write = Video only

• Image signal = Separate color signals

5 Connect the blocks as shown in the following figure. You might need to
resize some blocks to do so.

2-12

Working with Multimedia Files

You are now ready to set your block parameters by double-clicking the
blocks, modifying the block parameter values, and clicking OK.

6 If you have not already done so, set the configuration parameters. Open the
Configuration dialog box by selecting Configuration Parameters from
the Simulation menu. On the Solver pane, set the parameters as follows:

• Stop time = 20

• Type = Fixed-step

• Solver = Discrete (no continuous states)

7 Run your model.

You can view your video in the To Video Display window. By increasing the
red, green, and blue color values, you increased the contrast of the video.
The To Multimedia File block exports the video data from the Simulink
model to a multimedia file that it creates in your current folder.

2-13

2 Importing and Exporting Images and Video

You have now manipulated your video stream and exported it from a Simulink
model to a multimedia file. For more information, see the To Multimedia File
block reference page in the Video and Image Processing Blockset Reference.

Working with AVI Files

• “Importing and Viewing AVI Files” on page 2-14

• “Exporting to AVI Files” on page 2-18

• “Annotating AVI Files with Video Frame Numbers” on page 2-22

• “Annotating AVI Files at Two Separate Locations” on page 2-26

• “Saving Portions of an AVI File to Separate Files” on page 2-30

Importing and Viewing AVI Files
Before you can analyze or operate on your data, you must import it into
your Simulink model. Blocks from the Sources library, such as the From
Multimedia File block, can help you with this type of task.

In this section, you use the From Multimedia File block to import video from
an AVI file into your model and the Video Viewer block to view it:

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

2-14

Working with Multimedia Files

Block Library Quantity

From Multimedia File Video and Image Processing
Blockset > Sources

1

Video Viewer Video and Image Processing
Blockset > Sinks

1

2 Use the From Multimedia File block to import an AVI file into the model.
Double-click the From Multimedia File block. The Video and Image
Processing Blockset software has sample AVI files you can use to complete
this procedure.

• If you do not have your own AVI file, enter barcodes.avi for the File
name parameter.

• If the AVI file is on your MATLAB path, enter the AVI filename for
the File name parameter.

• If the file is not on your MATLAB path, use the Browse button to locate
the AVI filename.

• Image signal = Separate color signals

By default, the Number of times to play file parameter is set to inf. The
model continues to play the file until the simulation stops.

3 Use the Video Viewer block to view the AVI file. Click the File menu of
the Video Viewer GUI to set the Image signal parameter to Separate
color signals.

4 Connect the blocks so your model looks similar to the following figure.

2-15

2 Importing and Exporting Images and Video

5 Set the configuration parameters. Open the Configuration dialog box by
selecting Simulation > Configuration Parameters. Set the parameters
as follows:

• Solver pane, Stop time = 20

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

6 Run your model.

View your video in the Video Viewer window that automatically appears
when you start your simulation.

2-16

Working with Multimedia Files

Note The video that is displayed in the Video Viewer window runs as fast
as Simulink processes the video frames. If you are on a Windows platform
and you want to run the video at the frame rate that corresponds to the
input sample time, use the To Video Display block.

You have now imported and displayed video data in your Simulink model. In
“Exporting to AVI Files” on page 2-18, you manipulate your video stream
and export it to an AVI file. For more information on the blocks used in this
example, see the From Multimedia File and Video Viewer block reference
pages in the Video and Image Processing Blockset Reference. To listen to

2-17

2 Importing and Exporting Images and Video

audio associated with an AVI file, use the To Audio Device block in Signal
Processing Blockset software.

Note The Video Viewer block is supported on all platforms, but it does not
support code generation. If you are on a Windows platform, you can use
the To Video Display block to display video data. This block supports code
generation. For more information, see the To Video Display block reference
page in the Video and Image Processing Blockset Reference.

Exporting to AVI Files
The Video and Image Processing Blockset blocks enables you to export video
data from your Simulink model. In the following procedure, you use the To
Multimedia File block to export video data from your model into an AVI file:

1 If the model you created in “Importing and Viewing AVI Files” on page 2-14
is not open on your desktop, open an equivalent model by typing

doc_export

at the MATLAB command prompt.

2 Click-and-drag the blocks shown on the following table into your model.

2-18

Working with Multimedia Files

Block Library Quantity

To Multimedia File Video and Image Processing
Blockset > Sinks

1

Gain Simulink > Math Operations 2

3 Change the inputs to the To Multimedia File block. Set the block
parameters as follows:

• Write = Video only

• Image signal = Separate color signals

4 Connect the blocks as shown in the following figure. You might need to
resize some blocks to do so.

5 Use the Gain block to change the green values of the video stream. Set the
block parameters as follows:

2-19

2 Importing and Exporting Images and Video

• Main pane, Gain = 0.3

• Signal Attributes pane, Output data type = Inherit:Same as input

6 Use the Gain1 block to change the blue values of the video stream. Set the
block parameters as follows:

• Main pane, Gain = 1.5

• Signal Attributes pane, Output data type = Inherit:Same as input

7 Use the To Multimedia File block to export the video to an AVI file. Set
the File name parameter to my_test_file.avi.

8 If you have not already done so, set the configuration parameters. Open
the Configuration dialog box by selecting Simulation > Configuration
Parameters. Set the parameters as follows:

• Solver pane, Stop time = 20

• Solver pane, Type = Fixed-step

2-20

Working with Multimedia Files

• Solver pane, Solver = Discrete (no continuous states)

9 Run your model.

You can view your video in the Video Viewer window. The To Multimedia
File block exports the video data from the Simulink model to an AVI file
that it creates in your current folder.

You have now manipulated your video stream and exported it from a Simulink
model to an AVI file. For more information, see the To Multimedia File block
reference page in the Video and Image Processing Blockset Reference.

2-21

2 Importing and Exporting Images and Video

Annotating AVI Files with Video Frame Numbers
You can use the Insert Text block to overlay text on video stream. In this
example, you add a running count of the number of video frames to a video.

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

From Multimedia File Video and Image Processing
Blockset > Sources

1

Insert Text Video and Image Processing
Blockset > Text & Graphics

1

Video Viewer Video and Image Processing
Blockset > Sinks

2

2 Position the blocks as shown in the following figure.

3 Use the From Multimedia File block to import the video into the Simulink
model. Set the Image color space parameter to Intensity.

2-22

Working with Multimedia Files

4 Open the Surveillance Recording demo by typing

vipsurveillance

at the MATLAB command prompt.

5 Click-and-drag the Frame Counter block from the demo model into your
model. This block counts the number of frames in an input video.

6 Use the Insert Text block to annotate the video stream with a running
frame count. Set the block parameters as follows:

• Main pane, Text = ['Frame count' sprintf('\n') 'Source frame:
%d']

• Main pane, Location = [85 2]

• Main pane, Color value = 1

• Font pane, Font face = LucindaTypewriterRegular

By setting the Text parameter to ['Frame count' sprintf('\n')
'Source frame: %d'], you are asking the block to print Frame count on
one line and theSource frame: on a new line. Because you specified %d,
an ANSI C printf-style format specification, the Variables port appears on
the block. The block takes the port input (it is expecting a decimal) and
substitutes it for the %d in the string. You used the Location parameter to
specify where to print the text. In this case, the location is 85 rows down
and 2 columns over from the top left corner of the image.

7 Use the Video Viewer blocks to view the original and annotated videos.
Accept the default parameters.

8 Connect the blocks as shown in the following figure.

2-23

2 Importing and Exporting Images and Video

9 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = inf

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

10 Run the model.

The original video appears in the Video Viewer window.

2-24

Working with Multimedia Files

The annotated video appears in the Video Viewer1 window.

2-25

2 Importing and Exporting Images and Video

You have now added descriptive text to a video stream. For more information,
see the Insert Text block reference page in the Video and Image Processing
Blockset Reference. For related information, see the Draw Shapes and Draw
Markers block reference pages.

Annotating AVI Files at Two Separate Locations
You can use the Insert Text block to overlay text on a video stream at two
separate locations in the video frame.

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

From Multimedia File Video and Image Processing
Blockset > Sources

1

Insert Text Video and Image Processing
Blockset > Text & Graphics

1

Video Viewer Video and Image Processing
Blockset > Sinks

1

Constant Simulink > Sources 1

2 Position the blocks as shown in the following figure.

2-26

Working with Multimedia Files

3 Use the From Multimedia File block to import the video stream into the
Simulink model. Accept the default parameters.

4 Use the Insert Text block to annotate the video with two text strings. Set
the block parameters as follows:

• Main pane, Text = 'Text position: Row %d and Column %d'

• Main pane, Location = [[5 10]' [80 10]']

By setting the Text parameter to 'Text position: Row %d and Column
%d', you are asking the block to replace each conversion specification
(%d) with a decimal input to the Variables port. You used the Location
parameter to specify where to print each text string. In this case, the block
places the top-left corner of the text box that surrounds the first text string
5 rows down and 10 rows over from the top left corner of the image. The
block places the second text string 80 rows down and 10 rows over.

5 Use the Constant block to specify the decimal values input into the Insert
Text block’s Variables port. Because the conversion specification is %d, the
values must be an integer data type. Set the block parameters as follows:

• Main pane, Constant value = [[5 10]' [80 10]']

2-27

2 Importing and Exporting Images and Video

• Main pane, clear the Interpret vector parameters as 1–D check box.

• Signal Attributes pane, Output data type = uint8

The Insert Text block substitutes the values from the first column of the
Constant value parameter into the first text string and the values from
the second column into the second text string.

6 Use the Video Viewer blocks to view the annotated image. Accept the
default parameters.

7 Connect the blocks as shown in the following figure.

8 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = inf

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

2-28

Working with Multimedia Files

9 Run the model.

The annotated video appears in the Video Viewer window.

Alternatively, you can input two string values at the Variables port.

10 On the Insert Text block dialog box, set the Text parameter to'%s region
of interest'.

You are asking the block to replace the %s conversion specification with a
string input to the Variables port.

11 Use the Constant block to specify the strings to substitute into the first
and second text strings. Because the conversion specification is %s, the
values must be 8-bit unsigned integer data types. Set the Constant value
parameter to [uint8('First') 0 uint8('Second')].

12 Run the model.

The annotated video appears in the Video Viewer window.

2-29

2 Importing and Exporting Images and Video

You have now added descriptive text to a video stream. For more information,
see the Insert Text block reference page in the Video and Image Processing
Blockset Reference.

Saving Portions of an AVI File to Separate Files
In this section, you use To Multimedia File and Enabled Subsystem blocks to
save portions of one AVI file to three separate AVI files.

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

From Multimedia File Video and Image Processing
Blockset > Sources

1

Insert Text Video and Image Processing
Blockset > Text & Graphics

1

Enabled Subsystem Simulink > Ports & Subsystems 3

2-30

Working with Multimedia Files

Block Library Quantity

To Multimedia File Video and Image Processing
Blockset > Sinks

3

Counter Signal Processing Blockset >
Signal Management > Switches
and Counters

1

Compare To Constant Simulink > Logic and Bit
Operations

5

Logical Operator Simulink > Logic and Bit
Operations

1

Stop Simulation Simulink > Sinks 1

2 Place the blocks so that your model looks similar to the one in the following
figure.

2-31

2 Importing and Exporting Images and Video

3 Use the From Multimedia File block to import an AVI file into your model.
Set the parameters as follows:

• Uncheck Inherit sample time from file checkbox

• Set Desired sample time parameter = 1/30

4 Use the Insert Text block to annotate the video stream with the frame
numbers. Set the parameters as follows:

• Text = 'Frame %d'

• Location = [10 10]

• Color = [0 1 0]

2-32

Working with Multimedia Files

The block writes the frame number in green in the upper-left corner of the
output video stream.

5 Double-click each Enabled Subsystem block, and click-and-drag one of the
To Multimedia File blocks into it.

6 Inside each Enabled Subsystem, connect the blocks so that your subsystem
looks similar to the one in the following figure.

7 Use the To Multimedia File blocks to send the video stream to three
separate AVI files. Set the block parameters as follows:

• Output file name = output1.avi, output2.avi, and output3.avi,
respectively

• Write = Video only

Each enabled subsystem should now look similar to the subsystem shown
in the following figure.

2-33

2 Importing and Exporting Images and Video

8 Use the Counter block to count the number of video frames. You use this
information to specify which frames are sent to which file. Set the block
parameters as follows:

• Count event = Free running

• Initial count = 1

• Output = Count

• Clear the Reset input check box.

• Sample time = 1/30

• Count data type = uint16

9 Use the Compare to Constant block to send frames 1 to 9 to the first AVI
file. Set the block parameters as follows:

• Operator = <

• Constant value = 10

2-34

Working with Multimedia Files

10 Use the Compare to Constant1 and Compare to Constant2 blocks to send
frames 10 to 19 to the second AVI file. Set the Compare to Constant1 block
parameters as follows:

• Operator = >=

• Constant value = 10

Set the Compare to Constant2 block parameters as follows:

• Operator = <

• Constant value = 20

11 Use the Compare to Constant3 block to send frames 20 to 30 to the third
AVI file. Set the block parameters as follows:

• Operator = >=

• Constant value = 20

12 Use the Compare to Constant4 block to stop the simulation when the video
reaches frame 30. Set the block parameters as follows:

• Operator = ==

• Constant value = 30

• Output data type mode = boolean

13 Connect the blocks so that your model resembles the one in the following
figure.

2-35

2 Importing and Exporting Images and Video

14 Set the configuration parameters. Open the Configuration dialog box by
selecting Simulation > Configuration Parameters. Set the parameters
as follows:

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

15 Run your model.

The model saves the three output AVI files in your current folder.

2-36

Working with Multimedia Files

16 View the resulting files by typing the following commands at the MATLAB
command prompt:

mplay output1.avi
mplay output2.avi
mplay output3.avi

Then, press the Play button on the MPlay GUI.

You have now sent portions of an AVI file to three separate AVI files using
an Enabled Subsystem block, a To Multimedia File block, and a trigger
signal. For more information on the blocks used in this example, see the
From Multimedia File, Insert Text, Enabled Subsystem, and To Multimedia
File block reference pages.

2-37

2 Importing and Exporting Images and Video

Working with Audio
In this example, you use the From Multimedia File block to import a video
stream into a Simulink model. You also use Signal Processing Blockset
software From Wave File block to import an audio stream into the model.
Then you write this audio and video to a single file using the To Multimedia
File block.

This procedure assumes you are working on a Windows platform:

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

From Multimedia File Video and Image
Processing Blockset >
Sources

1

From Wave File Signal Processing
Blockset > Signal
Processing Sources

1

To Multimedia File Video and Image
Processing Blockset >
Sinks

1

2 Connect the blocks so your model looks similar to the following figure.

2-38

Working with Multimedia Files

3 Use the From Multimedia File block to import a multimedia file into
the model. Deselect the Inherit sample time from file check box.
(Deselecting the checkbox enables Desired sample time parameter.)
Accept the following default parameters.

2-39

2 Importing and Exporting Images and Video

The From Multimedia File block inherits its sample time from vipmen.avi.
For video signals, the sample time is equivalent to the frame period.
Because this file’s frame rate is 30 frames per second (fps) and the frame
period is defined as 1/frame rate, the frame period of this block is 0.0333
seconds per frame.

4 Use the From Wave File block to import an audio file into the model. To
calculate the output frame size, divide the frequency of the audio signal
(22050 samples per second) by the frame rate (which is approximately 30
frames per second) to get 735 samples per frame. Set the Samples per
output frame parameter to 735.

2-40

Working with Multimedia Files

The frame period of the audio signal must match the frame period of the
video signals, which is 0.0333 seconds per frame. Since the frame period
is also defined as the frame size divided by frequency, you can calculate
the frame period of the audio signal by dividing the frame size of the
audio signal (735 samples per frame) by the frequency (22050 samples
per second) to get 0.0333 seconds per frame. Alternatively, you can verify
that the frame period of the audio and video signals is the same using a
Simulink Probe block.

5 Use the To Multimedia File to output the audio and video signals to a
single multimedia file. Select Video and audio for the Write parameter
and One multidimensional signal for the Image signal parameter.
Accept the other default parameters.

2-41

2 Importing and Exporting Images and Video

6 Set the configuration parameters. Open the Configuration dialog box by
selecting Simulation > Configuration Parameters. On the Solver
pane, set the parameters as follows:

• Stop time = 10

• Type = Fixed-step

• Solver = Discrete (no continuous states)

7 Run your model. The model creates a multimedia file called output.avi in
your current folder.

8 Play the multimedia file using a media player. The original video file now
has an audio component to it.

You have now combined audio and video information into a single file using
the To Multimedia File block. For more information, see the To Multimedia
File block reference page in the Video and Image Processing Blockset
Reference.

2-42

Working with MATLAB® Workspace Variables

Working with MATLAB Workspace Variables

How to Import MATLAB Workspace Variables
You can import data from the MATLAB workspace using the Video From
Workspace block, which is created specifically for this task.

Use the Signal parameter to specify the MATLAB workspace variable from
which to read. For more information about how to use this block, see the
Video From Workspace block reference page.

2-43

2 Importing and Exporting Images and Video

2-44

3

Viewing Video

• “Viewing Video Files” on page 3-2

• “Viewing Video Signals in Simulink” on page 3-3

• “Viewing Video File Frames” on page 3-22

3 Viewing Video

Viewing Video Files
The Video and Image Processing Blockset provides three video viewer
applications to accommodate your specific requirements. This table
summarizes the intended use for these viewers.

Viewer Intended Use

Video Viewer A full featured viewer for your Simulink model.
The Video Viewer includes simulation controls and
analysis tools.

To Video Display A Windows® only lightweight, higher performance
simple display. This block also generates code.

mplay View video signals in Simulink models without adding
blocks to your model or view signal from the MATLAB
workspace or directly from a file.

3-2

Viewing Video Signals in Simulink®

Viewing Video Signals in Simulink

In this section...

“Using the Video Viewer Block” on page 3-3

“Using the To Video Display Block” on page 3-3

“Using the MPlay GUI” on page 3-3

Using the Video Viewer Block
Use the Video Viewer block when you require a wired-in video display with
simulation controls in your Simulink model. The Video Viewer block provides
simulation control buttons directly from the GUI. The block integrates play,
pause, and step features while running the model and also provides video
analysis tools such as pixel region viewer.

For more information about the Video Viewer block, see the Video Viewer
block reference page in the Video and Image Processing Blockset Reference.

Using the To Video Display Block
Use the To Video Display block in your Simulink model as a simple display
viewer designed for optimal performance. This block supports code generation
for the Windows platform.

For more information about the To Video Display block, see the To Video
Display block reference page in the Video and Image Processing Blockset
Reference.

Using the MPlay GUI
The MPlay GUI enables you to view video signals in Simulink models without
adding blocks to your model. You can also view videos represented as
variables in the MATLAB workspace.

You can open several instances of the MPlay GUI simultaneously to view
multiple video data sources at once. You can also dock these MPlay GUIs in
the MATLAB desktop. Use the figure arrangement buttons in the upper-right
corner of the Sinks window to control the placement of the docked GUIs.

3-3

3 Viewing Video

For further information on using the MPlay GUI, see the following topics:

• “Connecting MPlay to Your Simulink Model” on page 3-4

• “MPlay GUI Interface” on page 3-6

For more information about the MPlay GUI, see the mplay function reference
page.

Connecting MPlay to Your Simulink Model
Set Simulink simulation mode to Normal to use mplay . MPlay does not work
when you use “Acceleration Modes” on page 1-28.

The following procedure shows you how to use the MPlay GUI to view a
Simulink signal:

1 Open a Simulink model. At the MATLAB command prompt, type

vipmplaytut

2 Open an MPlay GUI by typing mplay on the MATLAB command line.

3-4

Viewing Video Signals in Simulink®

3 Run the model.

4 Select the signal line you want to view. For example, select the bus signal
coming out of the Rotate block.

5 On the MPlay GUI, click Connect to Simulink Signal GUI element,

The video appears in the MPlay window.

6 Change to floating-scope mode by clicking the persistent connect GUI

element, button.

3-5

3 Viewing Video

7 Experiment with selecting different signals and viewing them in the
MPlay window. You can also use multiple MPlay GUIs to display different
Simulink signals.

Note During code generation, Real-Time Workshop does not generate code
for the MPlay GUI.

MPlay GUI Interface
The following figure shows the MPlay GUI containing an image sequence.

3-6

Viewing Video Signals in Simulink®

The following sections provide descriptions of the MPlay GUI toolbar buttons
and equivalent menu options.

Toolbar Buttons

GUI Menu
Equivalent

Shortcut Keys
and Accelerators

Description

File > New
MPlay

Ctrl+N Open a new MPlay GUI.

File > Open Ctrl+O Connect to a video file.

File >
Import from
Workspace

Ctrl+I Connect to a variable from the
base MATLAB workspace.

File >
Connect to
Simulink
Signal

Connect to a Simulink signal.

File > Export
to Image Tool

Ctrl+E Send the current video
frame to the Image Tool.
For more information, see
“Using the Image Tool to
Explore Images” in the
Image Processing Toolbox
documentation.
The Image Tool only knows
the frame is an intensity
image if the colormap of
the frame is grayscale
(gray(256)). Otherwise, the
Image Tool assumes that the
frame is an indexed image
and disables the Adjust
Contrast button.

Tools > Video
Information

V View information about the
video data source.

3-7

3 Viewing Video

GUI Menu
Equivalent

Shortcut Keys
and Accelerators

Description

Tools > Pixel
Region

N/A Open the Pixel Region
tool. For more information
about this tool, see the
Image Processing Toolbox
documentation.

Tools > Zoom
In

N/A Zoom in on the video display.

Tools > Zoom
Out

N/A Zoom out of the video display.

Tools > Pan N/A Move the image displayed in
the GUI.

Tools >
Maintain Fit
to Window

N/A Scale video to fit GUI size
automatically. Toggle the
button on or off.

N/A N/A Enlarge or shrink the video
display. This option is
available if you do not select
theMaintain Fit toWindow
button.

Playback Toolbar — Workspace and File Sources

GUI Menu
Equivalent

Shortcut Keys
and Accelerators

Description

Playback >
Go to First

F, Home Go to the first frame of the
video.

Playback >
Rewind

Up arrow Jump back ten frames.

Playback >
Step Back

Left arrow, Page
Up

Step back one frame.

3-8

Viewing Video Signals in Simulink®

GUI Menu
Equivalent

Shortcut Keys
and Accelerators

Description

Playback >
Stop

S Stop the video.

Playback >
Play

P, Space bar Play the video.

Playback >
Pause

P, Space bar Pause the video. This button
appears only when the video
is playing.

Playback
> Step
Forward

Right arrow, Page
Down

Step forward one frame.

Playback >
Fast Forward

Down arrow Jump forward ten frames.

Playback >
Go to Last

L, End Go to the last frame of the
video.

Playback >
Jump to

J Jump to a specific frame.

Playback >
Playback
Modes >
Repeat

R Repeated video playback.

Playback >
Playback
Modes >
Forward play

A Play the video forward.

3-9

3 Viewing Video

GUI Menu
Equivalent

Shortcut Keys
and Accelerators

Description

Playback >
Playback
Modes >
Backwardplay

A Play the video backward.

Playback >
Playback
Modes >
AutoReverse
play

A Play the video forward and
backward.

Playback Toolbar — Simulink Sources

GUI Menu
Equivalent

Shortcut Keys
and Accelerators

Description

Playback >
Stop

S Stop the video. This button
also controls the Simulink
model.

Playback >
Start

P, Space bar Play the video. This button
also controls the Simulink
model.

Playback >
Pause

P, Space bar Pause the video. This button
also controls the Simulink
model and appears only when
the video is playing.

Playback
> Step
Forward

Right arrow, Page
Down

Step forward one frame.
This button also controls the
Simulink model.

Playback
> Simulink
Snapshot

N/A Click this button to freeze the
display in the MPlay window.

3-10

Viewing Video Signals in Simulink®

GUI Menu
Equivalent

Shortcut Keys
and Accelerators

Description

Playback >
Highlight
Simulink
Signal

Ctrl+L In the model window,
highlight the Simulink
signal the MPlay GUI is
displaying.

Playback
> Floating
Signal
Connection
(not selected)

N/A Indicates persistent Simulink
connection. In this mode, the
MPlay GUI always associates
with the Simulink signal you
selected before you clicked
the Connect to Simulink
Signal button.

Playback
> Floating
Signal
Connection
(selected)

N/A Indicates floating Simulink
connection. In this mode, you
can click different signals in
the model, and the MPlay
GUI displays them. You can
use only one MPlay GUI in
floating-scope mode at a time.

Configuration

The MPlay Configuration dialog box enables you to change the behavior and
appearance of the GUI as well as the behavior of the playback shortcut keys.

• To open the Configuration dialog box, select File > Configuration
Set > Edit.

• To save the configuration settings for future use, select
File > Configuration Set > Save as.

Note By default, the MPlay GUI uses the configuration settings from the
file mplay.cfg. Create a backup copy of the file to store your configuration
settings.

3-11

3 Viewing Video

• To load a preexisting configuration set, select File > Configuration
Set > Load.

Configuration Core Pane

The Core pane controls the graphic user interface (GUI) general and source
settings.

General UI
Click General UI, and then select the Options button to open the General
UI Options dialog box.

If you select the Display the full source path in the title bar check box,
the full Simulink path appears in the title bar. Otherwise, the title bar
displays a shortened name.

3-12

Viewing Video Signals in Simulink®

Use the Message log opens when parameter to control when the Message
log window opens. You can use this window to debug issues with video
playback. Your choices are for any new messages, for warn/fail
messages, only for fail messages, or manually.

Source UI
Click Source UI, and then click the Options button to open the Source UI
Options dialog box.

If you select the Keyboard commands respect playback modes check
box, the keyboard shortcut keys behave in response to the playback mode
you selected.

Using the Keyboard commands respect playback modes

Open and play a video using MPlay.

1 Select the Keyboard commands respect playback modes check box.

2 Select the Backward playback button.

• Using the right keyboard arrow key moves the video backward, and
using the left keyboard arrow key moves the video forward.

• With MPlay set to play backwards, the keyboard “forward” performs
“forward with the direction the video is playing”.

To disconnect the keyboard behavior from the MPlay playback settings, clear
the check box.

3-13

3 Viewing Video

Use the Recently used sources list parameter to control the number of
sources you see in the File menu.

Configuration Sources Pane

The Sources pane contains the GUI options that relate to connecting to
different sources. Select the Enabled check box next to each source type to
specify to which type of source you want to connect the GUI.

Click File, and then click the Options button to open the Sources:File
Options dialog box.

Use the Default open file path parameter to control the folder that is
displayed in the Connect to File dialog box. The Connect to File dialog box
becomes available when you select File > Open.

3-14

Viewing Video Signals in Simulink®

Click Simulink, and then click the Options button to open the
Sources:Simulink Options dialog box.

You can have the Simulink model associated with an MPlay GUI to open with
MPlay. To do so, select the Load Simulink model if not open check box.

Configuration Visuals Pane

The Visuals pane contains the name of the visual type and its description.

Configuration Tools Pane

The Tools pane contains the tools that are available on the MPlay GUI. Select
the Enabled check box next to the tool name to specify which tools to include
on the GUI.

3-15

3 Viewing Video

Click Image Tool, and then click the Options button to open the Image
Tool Options dialog box.

Select the Open new Image Tool window for export check box if you want
to send each video frame to a different session of Image Tool.

Pixel Region
Select the Pixel Region check box to display and enable the pixel region GUI
button. For more information on working with pixel regions, see Getting
Information about the Pixels in an Image.

Image Navigation Tools
Select the Image Navigation Tools check box to enable the pan-and-zoom
GUI button.

Instrumentation Set

3-16

Viewing Video Signals in Simulink®

Select the Instrumentation Set check box to enable the option to load and
save viewer settings. The option appears in the File menu.

Video Information

The Video Information dialog box lets you view basic information about the
video. To open this dialog box, select Tools > Video Information or click

the information button .

Color Map for Intensity Video

The Colormap dialog box lets you change the colormap of an intensity video.
You cannot access the parameters on this dialog box when the GUI displays
an RGB video signal. To open this dialog box for an intensity signal, select
Tools > Colormap or press C.

3-17

3 Viewing Video

Use the Colormap parameter to specify the colormap to apply to the intensity
video.

Sometimes, the pixel values do not use the entire data type range. In such
cases, you can select the Specify range of displayed pixel values check
box. You can then enter the range for your data. The dialog box automatically
displays the range based on the data type of the pixel values.

Frame Rate

The Frame Rate dialog box displays the frame rate of the source. It also lets
you change the rate at which the MPlay GUI plays the video and displays the
actual playback rate.

Note This dialog box becomes available when you use the MPlay GUI to view
a video signal in a Simulink model.

The playback rate is the number of frames the GUI processes per second. You
can use the Desired playback rate parameter to decrease or increase the
playback rate. To open this dialog box, select Playback > Frame Rate or
press T.

3-18

Viewing Video Signals in Simulink®

To increase the playback rate when system hardware cannot keep pace
with the desired rate, select the Allow frame drop to achieve desired
playback rate check box. This parameter enables the MPlay GUI to achieve
the playback rate by dropping video frames. Dropped video frames sometimes
cause lower quality playback.

You can refine further both the quality of playback versus the hardware
burden, by controlling the number of frames to drop per frame or frames
displayed. For example, suppose you set the Desired playback rate to
80 frames/sec. One way to achieve the desired playback rate is to set the

3-19

3 Viewing Video

Playback schedule to Show 1 frame, Drop 3 frames. Change this
playback schedule, by setting both of the refresh rates (which is how often
the GUI updates the screen), to 20 frames/sec. MPlay can achieve the desired
playback rate (in this case, 80 frames/sec) by using these parameter settings.

In general, the relationship between the Frame Drop parameters is:

Desired rate refresh rate
show frames drop frames

show fram
_ _ *

_ _
_

= +
ees

In this case, the refresh_rate includes a more accurate calculation based on
both the minimum and maximum refresh rates.

Use the Minimum refresh rate and Maximum refresh rate parameters
to adjust the playback schedule of video display. Use these parameters in
the following way:

• Increase the Minimum refresh rate parameter to achieve smoother
playback.

• Decrease the Maximum refresh rate parameter to reduce the demand
on system hardware.

Saving the Settings of Multiple MPlay GUIs

The MPlay GUI enables you to save and load the settings of multiple GUI
instances. You only have to configure the MPlay GUIs associated with your
model once.

To save the GUI settings:

• Select File > Instrumentation Sets > Save Set

To open the preconfigured MPlay GUIs:

• Select File > Instrumentation Sets > Load Set

You can save instrument sets for instances of MPlay connected to a source.
If you attempt to save an instrument set for an MPlay instance that is not
connected to a source, the Message Log displays a warning.

3-20

Viewing Video Signals in Simulink®

Message Log

The Message Log dialog box provides a system level record of configurations
and extensions used. You can filter what messages to display by Type and
Category, view the records, and display record details.

• The Type parameter allows you to select either All, Info, Warn, or Fail
message logs.

• The Category parameter allows you to select either Configuration or
Extension message summaries.

• The Configuration message indicates a new configuration file loaded.

• The Extension message indicates a registered component. For example,
a Simulink message, indicating a registered component, available for
configuration.

Status Bar

Along the bottom of the MPlay viewer is the status bar. It displays
information, such as video status, Type of video playing (I or RGB), Frame size,
Percentage of frame rate, Frame rate, and Current frame: Total frames.

Note A minus sign (-) for Current frame indicates reverse video playback.

3-21

3 Viewing Video

Viewing Video File Frames
The MPlay GUI enables you to view videos directly from files without having
to load all the video data into memory at once. The following procedure shows
you how to use the MPlay GUI to load and view a video one frame at a time:

1 On the MPlay GUI, click open file element,

2 Use the Connect to File dialog box to navigate to the multimedia file you
want to view in the MPlay window.

For example, navigate to
$matlabroot\toolbox\vipblks\vipdemos\vipmen.avi.

Click Open. The first frame of the video appears in the MPlay window.

3-22

Viewing Video File Frames

Note The MPlay GUI supports AVI files that the mmreader class supports.

3 Experiment with the MPlay GUI by using it to play and interact with the
video stream.

3-23

3 Viewing Video

3-24

4

Analysis and Enhancement

• “Feature Extraction” on page 4-2

• “Image Enhancement” on page 4-30

• “Template Matching” on page 4-67

• “Pixel Statistics” on page 4-73

4 Analysis and Enhancement

Feature Extraction

In this section...

“Finding Edges in Images” on page 4-2

“Finding Lines in Images” on page 4-9

“Measuring an Angle Between Lines” on page 4-18

Finding Edges in Images
You can use the Edge Detection block to find the edges of objects in an image.
This block finds the pixel locations where the magnitude of the gradient of
intensity is larger than a threshold value. These locations typically occur at
the boundaries of objects. In this section, you use the Edge Detection block to
find the edges of rice grains in an intensity image:

1 Create a Simulink model, and add the blocks shown in the following table.

Block Library Quantity

Image From File Video and Image Processing Blockset
> Sources

1

Edge Detection Video and Image Processing Blockset
> Analysis & Enhancement

1

Minimum Video and Image Processing Blockset
> Statistics

2

Maximum Video and Image Processing Blockset
> Statistics

2

Video Viewer Video and Image Processing Blockset
> Sinks

4

Subtract Simulink > Math Operations 2

Divide Simulink > Math Operations 2

2 Place the blocks so that your model resembles the following figure.

4-2

Feature Extraction

You are now ready to set your block parameters by double-clicking the
blocks, modifying the block parameter values, and clicking OK.

3 Use the Image From File block to import your image. Set the parameters
as follows:

• File name to rice.png.

• Output data type to single.

4 Use the Edge Detection block to find the edges in the image. Set the block
parameters as follows:

• Output type = Binary image and gradient components

• Select the Edge thinning check box.

4-3

4 Analysis and Enhancement

The Edge Detection block convolves the input matrix with the Sobel kernel.
This calculates the gradient components of the image that correspond
to the horizontal and vertical edge responses. The block outputs these
components at the Gh and Gv ports, respectively. Then the block performs
a thresholding operation on the gradient components to find the binary
image. The binary image is a matrix filled with 1s and 0s. The nonzero
elements of this matrix correspond to the edge pixels and the zero elements
correspond to the background pixels. The block outputs the binary image
at the Edge port.

5 View the original image using the Video Viewer block and the binary
image using the Video Viewer1 block. Accept the default parameters for
both viewers.

6 The matrix values at the Gv and Gh output ports from of the Edge
Detection block are double-precision floating-point. These matrix values

4-4

Feature Extraction

need to be scaled between 0 and 1 in order to display them using the Video
Viewer blocks. This is done with the Statistics and Math Operation blocks.

7 Use the Minimum blocks to find the minimum value of Gv and Gh matrices.
Set the Mode parameters to Value.

8 Use the Subtract blocks to subtract the minimum values from each element
of the Gv and Gh matrices. This process ensures that the minimum value
of these matrices is 0. Accept the default parameters.

9 Use the Maximum blocks to find the maximum value of the new Gv and
Gh matrices. Set the Mode parameters to Value.

10 Use the Divide blocks to divide each element of the Gv and Gh matrices
by their maximum value. This normalization process ensures that these
matrices range between 0 and 1.Accept the default parameters.

11 View the gradient components of the image using the Video Viewer1 and
Video Viewer2 blocks. Accept the default parameters.

12 Connect the blocks as shown in the following figure.

4-5

4 Analysis and Enhancement

13 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

14 Run your model.

The Video Viewer window displays the original image. The Video Viewer1
window displays the edges of the rice grains in white and the background
in black.

4-6

Feature Extraction

The Video Viewer2 window displays the intensity image of the vertical
gradient components of the image. You can see that the vertical edges of
the rice grains are darker and more well defined than the horizontal edges.

The Video Viewer3 window displays the intensity image of the horizontal
gradient components of the image. In this image, the horizontal edges of
the rice grains are more well defined.

4-7

4 Analysis and Enhancement

15 Double-click the Edge Detection block and clear the Edge thinning check
box.

16 Run your model again.

Your model runs faster because the Edge Detection block is more efficient
when you clear the Edge thinning check box. However, the edges of rice
grains in the Video Viewer window are wider.

4-8

Feature Extraction

You have now used the Edge Detection block to find the object boundaries in
an image. For more information on this block, see the Edge Detection block
reference page in the Video and Image Processing Blockset Reference.

Finding Lines in Images
Finding lines within images enables you to detect, measure, and recognize
objects. In this section, you use the Hough Transform, Find Local Maxima,
and Hough Lines blocks to find the longest line in an image.

1 Create a Simulink model, and add the blocks shown in the following table.

4-9

4 Analysis and Enhancement

Block Library Quantity

Image From File Video and Image Processing Blockset
> Sources

1

Edge Detection Video and Image Processing Blockset
> Analysis & Enhancement

1

Hough Transform Video and Image Processing Blockset
> Transforms

1

Find Local Maxima Video and Image Processing Blockset
> Statistics

1

Hough Lines Video and Image Processing Blockset
> Transforms

1

Draw Shapes Video and Image Processing Blockset
> Text & Graphics

1

Video Viewer Video and Image Processing Blockset
> Sinks

2

Variable Selector Signal Processing Blockset > Signal
Management > Indexing

2

Selector Simulink > Signal Routing 2

Terminator Simulink > Sinks 1

2 Place the blocks so that your model resembles the following figure.

4-10

Feature Extraction

You are now ready to set your block parameters by double-clicking the
blocks, modifying the block parameter values, and clicking OK.

3 Use the Image From File block to import your image. Set the File name
parameter to circuit.tif.

4 Use the Edge Detection block to find the edges in the intensity image. This
process improves the efficiency of the Hough Lines block as it reduces the
image area over which the block searches for lines. The block also converts
the image to a binary image, which is the required input for the Hough
Transform block. Accept the default parameters.

5 Use the Video Viewer block to display the original image and the Video
Viewer1 block to display the edges found by the Edge Detection block.
Accept the default parameters.

6 Use the Hough Transform block to compute the Hough matrix by
transforming the input image into the rho-theta parameter space. The
block also outputs the rho and theta values associated with the Hough
matrix. Set the block parameters as follows:

• Theta resolution (radians) = pi/360

• Select the Output theta and rho values check box.

4-11

4 Analysis and Enhancement

7 Use the Find Local Maxima block to find the location of the maximum
value in the Hough matrix. Set the block parameters as follows:

• Maximum number of local maxima (N) = 1

• Select the Input is Hough matrix spanning full theta range check
box.

4-12

Feature Extraction

4-13

4 Analysis and Enhancement

8 Use the Selector blocks to separate the indices of the rho and theta values,
which are output at the Idx port, that are associated with the maximum
value in the Hough matrix. Set the Selector block parameters as follows:

• Number of input dimensions: 1

• Index mode = Zero-based

– Index Option = Index vector (dialog)

– Index = 0

• Input port size = 2

Set the Selector1 block parameters as follows:

• Number of input dimensions: 1

• Index mode = Zero-based

– Index Option = Index vector (dialog)

– Index = 1

• Input port size = 2

9 Use the Variable Selector blocks to index into the rho and theta vectors and
determine the rho and theta values that correspond to the longest line in
the original image. Set the parameters of the Variable Selector blocks as
follows:

• Select = Columns

• Index mode = Zero-based

10 Use the Hough Lines block to determine where the longest line intersects
the edges of the original image. You use these coordinates to superimpose
a white line on the original image. Set the Sine value computation
method to Trigonometric function.

11 Use the Draw Shapes block to draw a white line over the longest line on the
original image. Set the block parameters as follows:

• Shape = Lines

• Border color = White

4-14

Feature Extraction

12 Use the Video Viewer2 block to display the original image with a white
line superimposed over the longest line in the image. Accept the default
parameters.

13 Connect the blocks as shown in the following figure.

14 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

15 Run your model.

The Video Viewer window displays the original image.

4-15

4 Analysis and Enhancement

Video Viewer1 displays the edges found in the original image in white
and the background in black.

4-16

Feature Extraction

The Video Viewer2 window displays the original image with a white line
drawn over the longest line in the image.

4-17

4 Analysis and Enhancement

You have now used the Hough Transform, Find Local Maxima, and Hough
Lines blocks to find the longest line in an image. For more information on
these blocks, see the Hough Transform, Find Local Maxima, and Hough Lines
block reference pages in the Video and Image Processing Blockset Reference.
For additional examples of the techniques used in this section, see the Lane
Departure Warning System and Rotation Correction demos. You can open
these demos by typing vipldws and viphough at the MATLAB command
prompt.

Measuring an Angle Between Lines
The Hough Transform, Find Local Maxima, and Hough Lines blocks enable
you to find lines in images. With the Draw Shapes block, you can annotate

4-18

Feature Extraction

images. In the following example, you use these capabilities to draw lines on
the edges of two beams and measure the angle between them.

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Video and Image Processing Blockset >
Sources

1

Color Space
Conversion

Video and Image Processing Blockset >
Conversions

1

Edge Detection Video and Image Processing Blockset >
Analysis & Enhancement

1

Hough Transform Video and Image Processing Blockset >
Transforms

1

Find Local
Maxima

Video and Image Processing Blockset >
Statistics

1

Draw Shapes Video and Image Processing Blockset >
Text & Graphics

1

Video Viewer Video and Image Processing Blockset >
Sinks

3

Hough Lines Video and Image Processing Blockset >
Transforms

1

Submatrix Signal Processing Blockset > Math
Functions > Matrices and Linear Algebra
> Matrix Operations

4

Terminator Simulink > Sinks 1

Selector Simulink > Signal Routing 4

Embedded
MATLAB
Function

Simulink > User-Defined Functions 1

Display Simulink > Sinks 1

2 Position the blocks as shown in the following figure.

4-19

4 Analysis and Enhancement

3 Use the Image From File block to import an image into the Simulink model.
Set the parameters as follows:

• File name = gantrycrane.png

• Sample time = 1

4 Use the Color Space Conversion block to convert the RGB image into the
Y’CbCr color space. You perform this conversion to separate the luma
information from the color information. Accept the default parameters.

Note In this example, you segment the image using a thresholding
operation that performs best on the Cb channel of the Y’CbCr color space.

5 Use the Selector and Selector1 blocks to separate the Y’ (luminance) and
Cb (chrominance) components from the main signal.

The Selector block separates the Y’ component from the entire signal. Set
its block parameters as follows:

• Number of input dimensions = 3

• Index mode = Zero-based

4-20

Feature Extraction

• 1

– Index Option = Select all

• 2

– Index Option = Select all

• 3

– Index Option = Index vector (dialog)

– Index = 1

The Selector1 block separates the Cb component from the entire signal.
Set its block parameters as follows:

• Number of input dimensions = 3

• Index mode = Zero-based

• 1

– Index Option = Select all

• 2

– Index Option = Select all

• 3

– Index Option = Index vector (dialog)

– Index = 2

6 Use the Submatrix and Submatrix1 blocks to crop the Y’ and Cb matrices
to a particular region of interest (ROI). This ROI contains two beams that
are at an angle to each other. Set the parameters as follows:

• Starting row = Index

• Starting row index = 66

• Ending row = Index

• Ending row index = 150

• Starting column = Index

• Starting column index = 325

4-21

4 Analysis and Enhancement

• Ending column = Index

• Ending column index = 400

7 Use the Edge Detection block to find the edges in the Cb portion of the
image. This block outputs a binary image. Set the Threshold scale
factor parameter to 1.

8 Use the Hough Transform block to calculate the Hough matrix, which gives
you an indication of the presence of lines in an image. Select the Output
theta and rho values check box as shown in the following figure.

Note In step 11, you find the theta and rho values that correspond to the
peaks in the Hough matrix.

4-22

Feature Extraction

9 Use the Find Local Maxima block to find the peak values in the Hough
matrix. These values represent potential lines in the input image. Set
the parameters as follows:

• Neighborhood size = [11 11]

• Input is Hough matrix spanning full theta range = selected

Because you are expecting two lines, leave the Maximum number of
local maxima (N) parameter set to 2, and connect the Count port to the
Terminator block.

4-23

4 Analysis and Enhancement

10 Use the Submatrix2 block to find the indices that correspond to the theta
values of the two peak values in the Hough matrix. Set the parameters as
follows:

• Starting row = Index

• Starting row index = 2

• Ending row = Index

• Ending row index = 2

The Idx port of the Find Local Maxima block outputs a matrix whose second
row represents the zero-based indices of the theta values that correspond
to the peaks in the Hough matrix. Now that you have these indices, you
can use a Selector block to extract the corresponding theta values from the
vector output of the Hough Transform block.

11 Use the Submatrix3 block to find the indices that correspond to the rho
values of the two peak values in the Hough matrix. Set the parameters as
follows:

• Ending row = Index

• Ending row index = 1

The Idx port of the Find Local Maxima block outputs a matrix whose first
row represents the zero-based indices of the rho values that correspond to
the peaks in the Hough matrix. Now that you have these indices, you can
use a Selector block to extract the corresponding rho values from the vector
output of the Hough Transform block.

12 Use the Selector2 and Selector3 blocks to find the theta and rho values
that correspond to the peaks in the Hough matrix. These values, output
by the Hough Transform block, are located at the indices output by the
Submatrix2 and Submatrix3 blocks. Set both block parameters as follows:

• Index mode = Zero-based

• 1

– Index Option = Index vector (port)

• Input port size = -1

4-24

Feature Extraction

You set the Index mode to Zero-based because the Find Local Maxima
block outputs zero-based indices at the Idx port.

13 Use the Hough Lines block to find the Cartesian coordinates of lines that
are described by rho and theta pairs. Set the Sine value computation
method parameter to Trigonometric function.

14 Use the Draw Shapes block to draw the lines on the luminance portion of
the ROI. Set the parameters as follows:

• Shape = Lines

• Border color = White

15 Use the Embedded MATLAB Function block to calculate the angle between
the two lines. Copy and paste the following code into the block:

function angle = compute_angle(theta)

%Compute the angle value in degrees
angle = abs(theta(1)-theta(2))*180/pi;
%Always return an angle value less than 90 degrees
if (angle>90)

angle = 180-angle;
end

16 Use the Display block to view the angle between the two lines. Accept the
default parameters.

17 Use the Video Viewer blocks to view the original image, the ROI, and the
annotated ROI. Accept the default parameters.

18 Connect the blocks as shown in the following figure.

4-25

4 Analysis and Enhancement

19 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

20 Run the model.

4-26

Feature Extraction

The Video Viewer window displays the original image.

4-27

4 Analysis and Enhancement

The Video Viewer1 window displays the ROI where two beams intersect.

4-28

Feature Extraction

The Video Viewer2 window displays the ROI that has been annotated with
two white lines.

The Display block shows a value of 58, which is the angle in degrees
between the two lines on the annotated ROI.

You have now annotated an image with two lines and measured the angle
between them. For additional information, see the Hough Transform, Find
Local Maxima, Hough Lines, and Draw Shapes block reference pages in the
Video and Image Processing Blockset Reference.

4-29

4 Analysis and Enhancement

Image Enhancement

In this section...

“Sharpening and Blurring an Image” on page 4-30

“Removing Salt and Pepper Noise from Images” on page 4-39

“Removing Periodic Noise from Video” on page 4-45

“Adjusting the Contrast in Intensity Images” on page 4-54

“Adjusting the Contrast in Color Images” on page 4-61

Sharpening and Blurring an Image
To sharpen a color image, you need to make the luma intensity transitions
more acute, while preserving the color information of the image. To do this,
you convert an R’G’B’ image into the Y’CbCr color space and apply a highpass
filter to the luma portion of the image only. Then, you transform the image
back to the R’G’B’ color space to view the results. To blur an image, you apply
a lowpass filter to the luma portion of the image. This example shows how
to use the 2-D FIR Filter block to sharpen and blur an image. The prime
notation indicates that the signals are gamma corrected.

1 Define an R’G’B’ image in the MATLAB workspace. To read in an R’G’B’
image from a PNG file and cast it to the double-precision data type, at the
MATLAB command prompt, type

I= im2double(imread('peppers.png'));

I is a 384-by-512-by-3 array of double-precision floating-point values.
Each plane of this array represents the red, green, or blue color values
of the image.

2 To view the image this array represents, at the MATLAB command
prompt, type

imshow(I)

4-30

Image Enhancement

Now that you have defined your image, you can create your model.

3 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From
Workspace

Video and Image Processing Blockset >
Sources

1

Color Space
Conversion

Video and Image Processing Blockset >
Conversions

2

2-D FIR Filter Video and Image Processing Blockset >
Filtering

1

Video Viewer Video and Image Processing Blockset >
Sinks

1

4-31

4 Analysis and Enhancement

4 Position the blocks as shown in the following figure.

5 Use the Image From Workspace block to import the R’G’B’ image from the
MATLAB workspace. Set the parameters as follows:

• Main pane, Value = I

• Main pane, Image signal = Separate color signals

The block outputs the R’, G’, and B’ planes of the I array at the output ports.

6 The first Color Space Conversion block converts color information from
the R’G’B’ color space to the Y’CbCr color space. Set the Image signal
parameter to Separate color signals

4-32

Image Enhancement

7 Use the 2-D FIR Filter block to filter the luma portion of the image. Set the
block parameters as follows:

• Coefficients = fspecial('unsharp')

• Output size = Same as input port I

• Padding options = Symmetric

• Filtering based on = Correlation

4-33

4 Analysis and Enhancement

The fspecial('unsharp') command creates two-dimensional highpass
filter coefficients suitable for correlation. This highpass filter sharpens the
image by removing the low frequency noise in it.

8 The second Color Space Conversion block converts the color information
from the Y’CbCr color space to the R’G’B’ color space. Set the block
parameters as follows:

• Conversion = Y'CbCr to R'G'B'

• Image signal = Separate color signals

4-34

Image Enhancement

9 Use the Video Viewer block to automatically display the new, sharper
image in the Video Viewer window when you run the model. Set the Image
signal parameter to Separate color signals, by selecting File > Image
Signal.

10 Connect the blocks as shown in the following figure.

4-35

4 Analysis and Enhancement

11 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

12 Run the model.

A sharper version of the original image appears in the Video Viewer
window.

4-36

Image Enhancement

13 To blur the image, double-click the 2-D FIR Filter block. Set Coefficients
parameter to fspecial('gaussian',[15 15],7) and then click OK.

The fspecial('gaussian',[15 15],7) command creates two-dimensional
Gaussian lowpass filter coefficients. This lowpass filter blurs the image by
removing the high frequency noise in it.

4-37

4 Analysis and Enhancement

14 Run the model.

A blurred version of the original image appears in the Video Viewer
window. The following image is shown at its true size.

In this example, you used the Color Space Conversion and 2-D FIR Filter
blocks to sharpen and blur an image. For more information on these blocks,

4-38

Image Enhancement

see the Color Space Conversion and 2-D FIR Filter block reference pages in
the Video and Image Processing Blockset Reference. For more information on
the fspecial function, see the Image Processing Toolbox documentation.

Removing Salt and Pepper Noise from Images
Median filtering is a common image enhancement technique for removing
salt and pepper noise. Because this filtering is less sensitive than linear
techniques to extreme changes in pixel values, it can remove salt and pepper
noise without significantly reducing the sharpness of an image. In this topic,
you use the Median Filter block to remove salt and pepper noise from an
intensity image:

1 Define an intensity image in the MATLAB workspace and add noise to it by
typing the following at the MATLAB command prompt:

I= double(imread('circles.png'));
I= imnoise(I,'salt & pepper',0.02);

I is a 256-by-256 matrix of 8-bit unsigned integer values.

2 To view the image this matrix represents, at the MATLAB command
prompt, type

imshow(I)

4-39

4 Analysis and Enhancement

The intensity image contains noise that you want your model to eliminate.

3 Create a Simulink model, and add the blocks shown in the following table.

Block Library Quantity

Image From
Workspace

Video and Image Processing Blockset
> Sources

1

Median Filter Video and Image Processing Blockset
> Filtering

1

Video Viewer Video and Image Processing Blockset
> Sinks

2

4 Position the blocks as shown in the following figure.

4-40

Image Enhancement

5 Use the Image From Workspace block to import the noisy image into your
model. Set the Value parameter to I.

6 Use the Median Filter block to eliminate the black and white speckles in
the image. Use the default parameters.

4-41

4 Analysis and Enhancement

The Median Filter block replaces the central value of the 3-by-3
neighborhood with the median value of the neighborhood. This process
removes the noise in the image.

7 Use the Video Viewer blocks to display the original noisy image, and
the modified image. Images are represented by 8-bit unsigned integers.
Therefore, a value of 0 corresponds to black and a value of 255 corresponds
to white. Accept the default parameters.

8 Connect the blocks as shown in the following figure.

4-42

Image Enhancement

9 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

10 Run the model.

The original noisy image appears in the Video Viewer window. To view
the image at its true size, right-click the window and select Set Display
To True Size.

4-43

4 Analysis and Enhancement

The cleaner image appears in the Video Viewer1 window. The following
image is shown at its true size.

4-44

Image Enhancement

You have used the Median Filter block to remove noise from your image. For
more information about this block, see the Median Filter block reference page
in the Video and Image Processing Blockset Reference.

Removing Periodic Noise from Video
Periodic noise can be introduced into a video stream during acquisition or
transmission due to electrical or electromechanical interference. In this
example, you remove periodic noise from an intensity video using the 2-D FIR
Filter block. You can use this technique to remove noise from other images or
video streams, but you might need to modify the filter coefficients to account
for the noise frequency content present in your signal:

1 Create a Simulink model, and add the blocks shown in the following table.

4-45

4 Analysis and Enhancement

Block Library Quantity

Read Binary File Video and Image Processing Blockset >
Sources

1

Image Data Type
Conversion

Video and Image Processing Blockset >
Conversions

1

2-D FIR Filter Video and Image Processing Blockset >
Filtering

1

Video Viewer Video and Image Processing Blockset >
Sinks

3

Add Simulink > Math Operations 1

2 Open the Periodic noise reduction demo by typing vipstripes at the
MATLAB command prompt.

3 Click-and-drag the Periodic Noise block into your model.

The block outputs a sinusoid with a normalized frequency that ranges
between 0.61π and 0.69π radians per sample and a phase that varies
between zero and three radians. You are using this sinusoid to represent
periodic noise.

4 Place the blocks so that your model resembles the following figure. The
unconnected ports disappear when you set block parameters.

4-46

Image Enhancement

You are now ready to set your block parameters by double-clicking the
blocks, modifying the block parameter values, and clicking OK.

5 Use the Read Binary File block to import a binary file into the model. Set
the block parameters as follows:

• File name = cat_video.bin

• Four character code = GREY

• Number of times to play file = inf

• Sample time = 1/30

4-47

4 Analysis and Enhancement

6 Use the Image Data Type Conversion block to convert the data type of the
video to single-precision floating point. Accept the default parameter.

7 Use the Video Viewer block to view the original video. Accept the default
parameters.

8 Use the Add block to add the noise video to the original video. Accept the
default parameters.

9 Use the Video Viewer1 block to view the noisy video. Accept the default
parameters.

10 Define the filter coefficients in the MATLAB workspace. Type the following
code at the MATLAB command prompt:

4-48

Image Enhancement

vipdh_stripes

The variable h, as well as several others, are loaded into the MATLAB
workspace. The variable h represents the coefficients of the band reject
filter capable of removing normalized frequencies between 0.61π and 0.69π
radians per sample. The coefficients were created using the Filter Design
and Analysis Tool (FDATool) and the ftrans2 function.

11 Use the 2-D FIR Filter block to model a band-reject filter capable of
removing the periodic noise from the video. Set the block parameters as
follows:

• Coefficients = h

• Output size = Same as input port I

• Padding options = Circular

Choose a type of padding that minimizes the effect of the pixels outside the
image on the processing of the image. In this example, circular padding
produces the best results because it is most effective at replicating the
sinusoidal noise outside the image.

4-49

4 Analysis and Enhancement

12 Use the Video Viewer2 block to view the approximation of the original
video. Accept the default parameters.

13 Connect the block as shown in the following figure.

4-50

Image Enhancement

14 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = inf

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

15 Run the model.

4-51

4 Analysis and Enhancement

The noisy video appears in the Video Viewer1 window. The following video
is shown at its true size.

4-52

Image Enhancement

The approximation of the original video appears in the Video Viewer2
window, and the artifacts of the processing appear near the edges of the
video. The following video is shown at its true size.

4-53

4 Analysis and Enhancement

You have used the Read Binary File block to import a binary video into your
model, the 2-D FIR Filter to remove periodic noise from this video, and the
Video Viewer block to display the results. For more information about these
blocks, see the Read Binary File, 2-D FIR Filter, and Video Viewer block
reference pages in the Video and Image Processing Blockset Reference. For
more information about the Filter Design and Analysis Tool (FDATool), see
the Signal Processing Toolbox documentation. For information about the
ftrans2 function, see the Image Processing Toolbox documentation.

Adjusting the Contrast in Intensity Images
This example shows you how to modify the contrast in two intensity images
using the Contrast Adjustment and Histogram Equalization blocks.

4-54

Image Enhancement

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Video and Image Processing Blockset
> Sources

2

Contrast
Adjustment

Video and Image Processing Blockset >
Analysis & Enhancement

1

Histogram
Equalization

Video and Image Processing Blockset >
Analysis & Enhancement

1

Video Viewer Video and Image Processing Blockset
> Sinks

4

2 Place the blocks so that your model resembles the following figure.

4-55

4 Analysis and Enhancement

3 Use the Image From File block to import the first image into the Simulink
model. Set the File name parameter to pout.tif.

4 Use the Image From File1 block to import the second image into the
Simulink model. Set the File name parameter to tire.tif.

5 Use the Contrast Adjustment block to modify the contrast in pout.tif.
Set the Adjust pixel values from parameter to Range determined by
saturating outlier pixels, as shown in the following figure.

4-56

Image Enhancement

This block adjusts the contrast of the image by linearly scaling the pixel
values between user-specified upper and lower limits.

6 Use the Histogram Equalization block to modify the contrast in tire.tif.
Accept the default parameters.

4-57

4 Analysis and Enhancement

This block enhances the contrast of images by transforming the values in
an intensity image so that the histogram of the output image approximately
matches a specified histogram.

7 Use the Video Viewer blocks to view the original and modified images.
Accept the default parameters.

8 Connect the blocks as shown in the following figure.

4-58

Image Enhancement

9 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

10 Run the model.

The results appear in the Video Viewer windows.

4-59

4 Analysis and Enhancement

In this example, you used the Contrast Adjustment block to linearly
scale the pixel values in pout.tif between new upper and lower limits.
You used the Histogram Equalization block to transform the values in
tire.tif so that the histogram of the output image approximately matches
a uniform histogram. For more information, see the Contrast Adjustment
and Histogram Equalization block reference pages in the Video and Image
Processing Blockset Reference.

4-60

Image Enhancement

Adjusting the Contrast in Color Images
This example shows you how to modify the contrast in color images using
the Histogram Equalization block.

1 Use the following code to read in an indexed RGB image, shadow.tif, and
convert it to an RGB image.

[X map] = imread('shadow.tif');
shadow = ind2rgb(X,map);

2 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From
Workspace

Video and Image Processing Blockset
> Sources

1

Color Space
Conversion

Video and Image Processing Blockset
> Conversions

2

Histogram
Equalization

Video and Image Processing Blockset >
Analysis & Enhancement

1

Video Viewer Video and Image Processing Blockset
> Sinks

2

Constant Simulink > Sources 1

Divide Simulink > Math Operations 1

Product Simulink > Math Operations 1

3 Place the blocks so that your model resembles the following figure.

4-61

4 Analysis and Enhancement

4 Use the Image From Workspace block to import the RGB image from the
MATLAB workspace into the Simulink model. Set the block parameters as
follows:

• Value = shadow

• Image signal = Separate color signals

5 Use the Color Space Conversion block to separate the luma information
from the color information. Set the block parameters as follows:

• Conversion = sR'G'B' to L*a*b*

• Image signal = Separate color signals

Because the range of the L* values is between 0 and 100, you must
normalize them to be between zero and one before you pass them to the
Histogram Equalization block, which expects floating point input in this
range.

6 Use the Constant block to define a normalization factor. Set the Constant
value parameter to 100.

7 Use the Divide block to normalize the L* values to be between 0 and 1.
Accept the default parameters.

4-62

Image Enhancement

8 Use the Histogram Equalization block to modify the contrast in the image.
Accept the default parameters.

This block enhances the contrast of images by transforming the luma
values in the color image so that the histogram of the output image
approximately matches a specified histogram.

9 Use the Product block to scale the values back to be between the 0 to 100
range. Accept the default parameters.

10 Use the Color Space Conversion1 block to convert the values back to the
sR’G’B’ color space. Set the block parameters as follows:

• Conversion = L*a*b* to sR'G'B'

• Image signal = Separate color signals

11 Use the Video Viewer blocks to view the original and modified images. For
each block, set the Image signal parameter to Separate color signals.

12 Connect the blocks as shown in the following figure.

4-63

4 Analysis and Enhancement

13 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

14 Run the model.

4-64

Image Enhancement

As shown in the following figure, the model displays the original image in
the Video Viewer1 window.

4-65

4 Analysis and Enhancement

As the next figure shows, the model displays the enhanced contrast image
in the Video Viewer window.

In this example, you used the Histogram Equalization block to transform
the values in a color image so that the histogram of the output image
approximately matches a uniform histogram. For more information, see
the Histogram Equalization block reference page in the Video and Image
Processing Blockset Reference.

4-66

Template Matching

Template Matching

In this section...

“Using the Template Matching Block” on page 4-67

“Video Stabilization” on page 4-71

“Panorama Creation” on page 4-72

Using the Template Matching Block
Template matching is a technique in image processing for finding subregions
of an image which match a template image. Template matching applications
include manufacturing, robotics, edge, or shape detection and facial
recognition. The matching process moves the template image to all possible
positions in a larger source image. It computes a numerical metric that
indicates how well the template matches the image in that position.

You can use any of the follow metrics for template matching with the Video
and Image Processing Blockset:

• Sum of Absolute Differences (SAD)

• Sum of Squared Differences (SSD)

• Maximum Absolute Difference (MaxAD)

Choosing an Output Option

The block outputs either a matrix of match metric values or the zero-based
location of the best template match. The block outputs the matrix to the
Metric port or the location to the Loc port. Optionally, the block can output
an NxN matrix of neighborhood match metric values to the NMetric port.

Input and Output Signal Sizes

Since the Template Matching block does not pad the input data, it can only
compute values for the match metrics between the input image and the
template for where the template is positioned such that it entirely falls on
the input image. A set of all such positions of the template is termed as the

4-67

4 Analysis and Enhancement

valid region of the input image. The size of the valid region is the difference
between the sizes of the input and template images plus one.

size size sizevalid input template= − + 1

The output at the Metric port for the Match metric mode is of the valid
image size. The output at the Loc port for the Best match index mode is a
two-element vector of indices relative to the top-left corner of the input image.

The neighborhood metric output at the NMetric port is of the size NxN where
N must be an odd number defined in the block mask.

Defining the Region of Interest (ROI)

To perform template matching on a subregion of the input image, select the
Enable ROI processing check box. This check box adds an input port ROI
to the Template Matching block. The ROI processing option is only available
for the Best match index mode.

The ROI port requires a four-element vector that defines a rectangular area.
The first two elements represent the zero-based row and column coordinates
for the upper-left corner. The second two elements represent the height and
width of the ROI. The block outputs best match location index relative to
the top left corner of the input image.

Choosing a Match Metric

The block computes the match metric at each step of the iteration. Choose
the match metric which best suits your application. The block evaluates
the best metric value based on the metric choice. The best metric is the
global optimum over the support of the “valid” subregion of the input image
intersected by the ROI, if provided.

Returning the Matrix of Match Metric Values

The matrix of the match metric values always implements single-step
exhaustive window iteration. Therefore, the block computes the metric values
at every pixel.

4-68

Template Matching

Returning the Best Match Location

When in the ROI processing mode, the block treats the image around the ROI
as an extension of the ROI subregion. Therefore, it computes the best match
locations true to the actual boundaries of the ROI. The best match location
indices returned are relative to the top-left corner of the input image.

Returning the Neighborhood Match Metric around the Best Match

If you choose to return the matrix of metric values in a neighborhood around
the best match, an exhaustive loop computes all the metric values for the NxN
neighborhood. This output is particularly useful for performing template
matching with subpixel accuracy.

Choosing a Search Method

When you select Best match location as the output option, you can choose
to use either Exhaustive or Three-step search methods.

The Exhaustive search method is computation intensive because it searches
at every pixel location of the image.

The Three-step search method is a fast search method employing the
following steps:

1 The search starts with a step size equal to or slightly greater than half of
the maximum search range.

2 The block compares nine search points in each step. They comprise the
central point of the search square, and eight search points located on the
search area boundaries.

3 The block decrements the step size by one, after each step, ending the
search with a step size of 1 pixel.

4 At each new step, the block moves the search center to the best matching
point resulting from the previous step.

4-69

4 Analysis and Enhancement

Three-Step Search

Using the ROIValid and NValid flags for Diagnostics

The ROIValid and NValid ports represent boolean flags, which track the
valid Region of Interest (ROI) and neighborhood. You can use these flags to
communicate with the downstream blocks and operations.

Valid Region of Interest

If you select the Output flag indicating if ROI is valid check box, the block
adds the ROIValid port. If the ROI lies partially outside the valid image, the
block only processes the intersection of the ROI and the valid image. The
block sets the ROI flag output to this port as follows:

• True, set to 1 indicating the ROI lies completely inside the valid part of
the input image.

4-70

Template Matching

• False, set to 0 indicating the ROI lies completely or partially outside of
the valid part of the input image.

Valid Neighborhood

The neighborhood matrix of metric values is valid inside of the Region of
Interest (ROI). You can use the Boolean flag at the NValid port to track the
valid neighborhood region. The block sets the neighborhood NValid boolean
flag output as follows:

• True, set to 1 indicating that the neighborhood containing the best match is
completely inside the region of interest.

• False, set to 0 indicating that the neighborhood containing the best match
is completely or partially outside of the region of interest.

Video Stabilization
The Estimate Motion Subsystem for Video Stabilization demo implements the
Template Matching block. The purpose of the model is to track a license plate
of a vehicle while reducing the effect of camera motion from a video stream.

In the first video frame, the model defines the target to track. In this case, it
is the back of a car and the license plate. It also establishes a dynamic search
region, where the last known target location determines the position.

You can find demos for the Video and Image Processing Blockset by typing
vipdemos on the MATLAB command line. You can launch the Video
Stabilization model directly by typing vipstabilize on the MATLAB
command line.

4-71

4 Analysis and Enhancement

Panorama Creation
The Motion Estimation Subsystem of the Panorama Creation demo
implements the Template Matching block. This model uses the block to
estimate the motion between consecutive video frames. Then it computes
the motion vector of a particular block in the current frame with respect to
the previous frame. The model uses this motion vector to align consecutive
frames of the video to form a panoramic picture.

You can find demos for the Video and Image Processing Blockset by typing
vipdemos on the MATLAB command line. You can launch the Panorama
model directly by typing vippanorama on the MATLAB command line.

4-72

Pixel Statistics

Pixel Statistics

In this section...

“Blocks That Compute Pixel Statistics” on page 4-73

“Finding the Histogram of an Image” on page 4-73

Blocks That Compute Pixel Statistics
The Video and Image Processing Blockset software together with the Signal
Processing Blockset software contains blocks that can provide information
about the data values that make up an image. Blocks from the Statistics
library, such as the Maximum and 2-D Autocorrelation blocks, can help you
determine this information.

Finding the Histogram of an Image
The Histogram block computes the frequency distribution of the elements in
each input image by sorting the elements into a specified number of discrete
bins. You can use the Histogram block to calculate the histogram of the R,
G, and/or B values in an image. This example shows you how to accomplish
this task:

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Video and Image Processing Blockset
> Sources

1

Video Viewer Video and Image Processing Blockset
> Sinks

1

Matrix
Concatenate

Simulink > Math Operations 1

Vector Scope Signal Processing Blockset > Signal
Processing Sinks

1

Histogram Signal Processing Blockset > Statistics 3

4-73

4 Analysis and Enhancement

2 Place the blocks so that your model resembles the following figure.

3 Use the Image From File block to import an RGB image. Set the block
parameters as follows:

• Sample time = inf

• Image signal = Separate color signals

• Output port labels: = R|G|B

• Output data type: = double

4-74

Pixel Statistics

4 Use the Video Viewer block to automatically display the original image
in the viewer window when you run the model. Set the Image signal
parameter to Separate color signals.

5 Use the Histogram block to calculate the histogram of the R, G, and B
values in the image. Set the Main tab block parameters as follows:

• Lower limit of histogram: 0

• Upper limit of histogram: 1

• Number of bins: = 256

4-75

4 Analysis and Enhancement

The R, G, and B input values to the Histogram block are double-precision
floating point and range between 0 and 1. The block creates 256 bins
between the maximum and minimum input values and counts the number
of R, G, and B values in each bin.

6 Use the Matrix Concatenate block to concatenate the R, G, and B column
vectors into a single matrix so they can be displayed using the Vector Scope
block. Set the Number of inputs parameter to 3.

7 Use the Vector Scope block to display the histograms of the R, G, and B
values of the input image. Set the block parameters as follows:

• Scope Properties pane, Input domain = User-defined

• Display Properties pane, clear the Frame number check box

• Display Properties pane, select the Channel legend check box

• Display Properties pane, select the Compact display check box

4-76

Pixel Statistics

• Axis Properties pane, clear the Inherit sample increment from
input check box.

• Axis Properties pane, Minimum Y-limit = 0

• Axis Properties pane, Maximum Y-limit = 1

• Axis Properties pane, Y-axis label = Count

• Line Properties pane, Line markers = .|s|d

• Line Properties pane, Line colors = [1 0 0]|[0 1 0]|[0 0 1]

8 Connect the blocks as shown in the following figure.

4-77

4 Analysis and Enhancement

9 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

10 Run the model.

The original image appears in the Video Viewer window.

11 Right-click in the Vector Scope window and select Autoscale.

4-78

Pixel Statistics

The scaled histogram of the image appears in the Vector Scope window.

You have now used the Histogram block to calculate the histogram of the R,
G, and B values in an RGB image. For more information about this block,
see the Histogram block reference page in the Video and Image Processing
Blockset Reference. To open a demo model that illustrates how to use this
block to calculate the histogram of the R, G, and B values in an RGB video
stream, type viphistogram at the MATLAB command prompt.

4-79

4 Analysis and Enhancement

4-80

5

Conversions

• “Intensity to Binary Conversion” on page 5-2

• “Color Space Conversion” on page 5-14

• “Chroma Resampling” on page 5-19

5 Conversions

Intensity to Binary Conversion

In this section...

“Overview of Intensity and Binary Images” on page 5-2

“Thresholding Intensity Images Using Relational Operators” on page 5-2

“Thresholding Intensity Images Using the Autothreshold Block” on page 5-7

Overview of Intensity and Binary Images
Binary images contain Boolean pixel values that are either 0 or 1. Pixels
with the value 0 are displayed as black; pixels with the value 1 are displayed
as white. Intensity images contain pixel values that range between the
minimum and maximum values supported by their data type. Intensity
images can contain only 0s and 1s, but they are not binary images unless
their data type is Boolean.

Thresholding Intensity Images Using Relational
Operators
You can use the Relational Operator block to perform a thresholding operation
that converts your intensity image to a binary image. This example shows
you how to accomplish this task:

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Video and Image Processing
Blockset > Sources

1

Video Viewer Video and Image Processing
Blockset > Sinks

2

Relational Operator Simulink > Logic and Bit
Operations

1

Constant Simulink > Sources 1

5-2

Intensity to Binary Conversion

2 Position the blocks as shown in the following figure.

3 Use the Image from File block to import your image. In this example the
image file is a 256-by-256 matrix of 8-bit unsigned integer values that
range from 0 to 255. Set the File name parameter to rice.png

4 Use the Video Viewer1 block to view the original intensity image. Accept
the default parameters.

5 Use the Constant block to define a threshold value for the Relational
Operator block. Since the pixel values range from 0 to 255, set the
Constant value parameter to 128. This value is image dependent.

6 Use the Relational Operator block to perform a thresholding operation
that converts your intensity image to a binary image. Set the Relational
Operator parameter to >. If the input to the Relational Operator block
is greater than 128, its output is a Boolean 1; otherwise, its output is
a Boolean 0.

5-3

5 Conversions

7 Use the Video Viewer block to view the binary image. Accept the default
parameters.

8 Connect the blocks as shown in the following figure.

5-4

Intensity to Binary Conversion

9 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

10 Run your model.

The original intensity image appears in the Video Viewer1 window.

The binary image appears in the Video Viewer window.

5-5

5 Conversions

Note A single threshold value was unable to effectively threshold this
image due to its uneven lighting. For information on how to address this
problem, see “Correcting for Nonuniform Illumination” on page 7-10.

You have used the Relational Operator block to convert an intensity image
to a binary image. For more information about this block, see the Relational
Operator block reference page in the Simulink documentation. For another
example that uses this technique, see “Counting Objects in an Image” on page
7-3. For additional information, see “Converting Between Image Types” in the
Image Processing Toolbox documentation.

5-6

Intensity to Binary Conversion

Thresholding Intensity Images Using the
Autothreshold Block
In the previous topic, you used the Relational Operator block to convert an
intensity image into a binary image. In this topic, you use the Autothreshold
block to accomplish the same task. Use the Autothreshold block when lighting
conditions vary and the threshold needs to change for each video frame.

1 If the model you created in “Thresholding Intensity Images Using
Relational Operators” on page 5-2 is not open on your desktop, you can
open an equivalent model by typing

doc_thresholding

at the MATLAB command prompt.

2 Use the Image from File block to import your image. In this example the
image file is a 256-by-256 matrix of 8-bit unsigned integer values that
range from 0 to 255. Set the File name parameter to rice.png

3 Delete the Constant and the Relational Operator blocks in this model.

5-7

5 Conversions

4 Add an Autothreshold block from the Conversions library of the Video and
Image Processing Blockset into your model.

5 Connect the blocks as shown in the following figure.

6 Use the Autothreshold block to perform a thresholding operation that
converts your intensity image to a binary image. Select the Output
threshold check box.

5-8

Intensity to Binary Conversion

The block outputs the calculated threshold value at the Th port.

7 Add a Display block from the Sinks library of the Signal Processing
Blockset library. Connect the Display block to the Th output port of the
Authothreshold block.

Your model should look similar to the following figure:

5-9

5 Conversions

8 Double-click the Image From File block. On the Data Types pane, set the
Output data type parameter to double.

9 If you have not already done so, set the configuration parameters. Open the
Configuration dialog box by selecting Configuration Parameters from
the Simulation menu. Set the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

10 Run the model.

The original intensity image appears in the Video Viewer1 window.

5-10

Intensity to Binary Conversion

The binary image appears in the Video Viewer window.

5-11

5 Conversions

In the model window, the Display block shows the threshold value,
calculated by the Autothreshold block, that separated the rice grains from
the background.

5-12

Intensity to Binary Conversion

You have used the Autothreshold block to convert an intensity image to a
binary image. For more information about this block, see the Autothreshold
block reference page in the Video and Image Processing Blockset Reference. To
open a demo model that uses this block, type vipstaples at the MATLAB
command prompt.

5-13

5 Conversions

Color Space Conversion

In this section...

“Overview of Color Space Conversion Block” on page 5-14

“Converting Color Information from R’G’B’ to Intensity” on page 5-14

Overview of Color Space Conversion Block
The Color Space Conversion block enables you to convert color information
from the R’G’B’ color space to the Y’CbCr color space and from the Y’CbCr
color space to the R’G’B’ color space as specified by Recommendation ITU-R
BT.601-5. This block can also be used to convert from the R’G’B’ color space to
intensity. The prime notation indicates that the signals are gamma corrected.

Converting Color Information from R’G’B’ to Intensity
Some image processing algorithms are customized for intensity images. If
you want to use one of these algorithms, you must first convert your image
to intensity. In this topic, you learn how to use the Color Space Conversion
block to accomplish this task. You can use this procedure to convert any
R’G’B’ image to an intensity image:

1 Define an R’G’B’ image in the MATLAB workspace. To read in an R’G’B’
image from a JPG file, at the MATLAB command prompt, type

I= imread('greens.jpg');

I is a 300-by-500-by-3 array of 8-bit unsigned integer values. Each plane of
this array represents the red, green, or blue color values of the image.

2 To view the image this matrix represents, at the MATLAB command
prompt, type

imshow(I)

5-14

Color Space Conversion

3 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From
Workspace

Video and Image Processing
Blockset > Sources

1

Color Space
Conversion

Video and Image Processing
Blockset > Conversions

1

Video Viewer Video and Image Processing
Blockset > Sinks

1

4 Position the blocks as shown in the following figure.

5-15

5 Conversions

Once you have assembled the blocks needed to convert a R’G’B’ image to an
intensity image, you are ready to set your block parameters. To do this,
double-click the blocks, modify the block parameter values, and click OK.

5 Use the Image from Workspace block to import your image from the
MATLAB workspace. Set theValue parameter to I.

6 Use the Color Space Conversion block to convert the input values from the
R’G’B’ color space to intensity. Set the Conversion parameter to R'G'B'
to intensity.

5-16

Color Space Conversion

7 View the modified image using the Video Viewer block. Accept the default
parameters.

8 Connect the blocks so that your model is similar to the following figure.

9 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

5-17

5 Conversions

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

10 Run your model.

The image displayed in the Video Viewer window is the intensity version
of the greens.jpg image.

In this topic, you used the Color Space Conversion block to convert color
information from the R’G’B’ color space to intensity. For more information on
this block, see the Color Space Conversion block reference page in the Video
and Image Processing Blockset Reference.

5-18

Chroma Resampling

Chroma Resampling
The Y’CbCr color space separates the luma (Y’) component of an image from
the chroma (Cb and Cr) components. Luma and chroma, which are calculated
using gamma corrected R, G, and B (R’, G’, B’) signals, are different quantities
than the CIE chrominance and luminance. Because the human eye is more
sensitive to changes in luma than to changes in chroma, you can reduce the
bandwidth required for transmission or storage of a signal by removing some
of the color information. For this reason, this color space is often used for
digital encoding and transmission applications. In the following example, you
use the Chroma Resampling block to downsample the Cb and Cr components
of an image:

1 Define an RGB image in the MATLAB workspace. To read in an RGB
image from a TIF file, at the MATLAB command prompt, type

I= imread('autumn.tif');

I is a 206-by-345-by-3 array of 8-bit unsigned integer values. Each plane of
this array represents the red, green, or blue color values of the image.

2 To view the image this array represents, at the MATLAB command
prompt, type

imshow(I)

5-19

5 Conversions

3 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From
Workspace

Video and Image Processing
Blockset > Sources

1

Image Pad Video and Image Processing
Blockset > Utilities

1

Color Space
Conversion

Video and Image Processing
Blockset > Conversions

2

Chroma Resampling Video and Image Processing
Blockset > Conversions

2

Video Viewer Video and Image Processing
Blockset > Sinks

1

Selector Simulink > Signal Routing 3

4 Position the blocks as shown in the following figure.

5-20

Chroma Resampling

The blocks to the left of and including the Chroma Resampling block
represent the transmission portion of the model. The remaining blocks
represent the receiving portion of the model. Once you have assembled
these blocks, you are ready to set your block parameters. To do this,
double-click the blocks, modify the block parameter values, and click OK.

5 Use the Image from Workspace block to import your image from the
MATLAB workspace. Set the Value parameter to I.

6 Use the Image Pad block to change the dimensions of the I array from
206-by-345-by-3 to 206-by-346-by-3. You are changing these dimensions
because the Chroma Resampling block requires that the dimensions of the
input be divisible by 2. Set the block parameters as follows:

• Method = Symmetric

• Pad rows at = Right

• Pad size along rows = 1

• Pad columns at = No padding

5-21

5 Conversions

The Image Pad block adds one column to the right of each plane of the
array by repeating its border values. This padding minimizes the effect
of the pixels outside the image on the processing of the image.

Note When processing video streams, it is computationally expensive to
pad every video frame. You should change the dimensions of the video
stream before you process it with Video and Image Processing Blockset
blocks.

5-22

Chroma Resampling

7 Use the Selector blocks to separate the individual color planes from the
main signal. This simplifies the color space conversion section of the model.
Set the Selector block parameters as follows:

• Number of input dimensions = 3

• 1

– Index Option = Select all

• 2

– Index Option = Select all

• 3

– Index Option = Index vector (dialog)

– Index = 1

Set the Selector1 block parameters as follows:

• Number of input dimensions = 3

• 1

– Index Option = Select all

• 2

– Index Option = Select all

• 3

– Index Option = Index vector (dialog)

– Index = 2

Set the Selector2 block parameters as follows:

• Number of input dimensions = 3

• 1

– Index Option = Select all

• 2

– Index Option = Select all

• 3

– Index Option = Index vector (dialog)

– Index = 3

5-23

5 Conversions

8 Use the Color Space Conversion block to convert the input values from the
R’G’B’ color space to the Y’CbCr color space. The prime symbol indicates
a gamma corrected signal. Set the Image signal parameter to Separate
color signals.

9 Use the Chroma Resampling block to downsample the chroma components
of the image from the 4:4:4 format to the 4:2:2 format. Use the default
parameters.

The dimensions of the output of the Chroma Resampling block are smaller
than the dimensions of the input. Therefore, the output signal requires less
bandwidth for transmission.

10 Use the Chroma Resampling1 block to upsample the chroma components of
the image from the 4:2:2 format to the 4:4:4 format. Set the Resampling
parameter to 4:2:2 to 4:4:4.

11 Use the Color Space Conversion1 block to convert the input values from the
Y’CbCr color space to the R’G’B’ color space. Set the block parameters as
follows:

• Conversion = Y'CbCr to R'G'B'

• Image signal = Separate color signals

12 Use the Video Viewer block to display the recovered image. Set the Image
signal parameter to Separate color signals.

13 Connect the blocks as shown in the following figure.

5-24

Chroma Resampling

14 Configure Simulink to display signal dimensions next to each signal line.
Click Format > Port/Signal Displays > Signal Dimensions.

15 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

16 Run the model.

The recovered image appears in the Video Viewer window.

5-25

5 Conversions

17 Examine the signal dimensions in your model. The Chroma Resampling
block downsamples the Cb and Cr components of the image from 206-by-346
matrices to 206-by-173 matrices. These matrices require less bandwidth
for transmission while still communicating the information necessary to
recover the image after it is transmitted.

You have used the Chroma Resampling block to downsample the Cb and
Cr components of an image. For more information about this block, see the
Chroma Resampling block reference page in the Video and Image Processing
Blockset Reference.

5-26

6

Geometric Transformation

• “Geometric Transformation Interpolation Methods” on page 6-2

• “Rotating an Image” on page 6-6

• “Resizing an Image” on page 6-14

• “Cropping an Image” on page 6-20

6 Geometric Transformation

Geometric Transformation Interpolation Methods

In this section...

“Overview of Interpolation Methods” on page 6-2

“Nearest Neighbor Interpolation” on page 6-2

“Bilinear Interpolation” on page 6-3

“Bicubic Interpolation” on page 6-4

Overview of Interpolation Methods
The Geometric Transformations library of Video and Image Processing
Blockset software contains blocks that perform geometric transformations.
These blocks use interpolation to calculate the appropriate pixel values so
that images appear rotated, translated, resized, or sheared.

Note The examples in the following sections are illustrations of interpolation
methods. The block algorithms are implemented in a slightly different way
so that they are optimized for speed and memory.

Nearest Neighbor Interpolation
For nearest neighbor interpolation, the block uses the value of nearby
translated pixel values for the output pixel values.

For example, suppose this matrix,

1 2 3
4 5 6
7 8 9

represents your input image. You want to translate this image 1.7 pixels in
the positive horizontal direction using nearest neighbor interpolation. The
Translate block’s nearest neighbor interpolation algorithm is illustrated by
the following steps:

6-2

Geometric Transformation Interpolation Methods

1 Zero pad the input matrix and translate it by 1.7 pixels to the right.

� � � � �

� � � � �

	
 � � �

�������	
�

������
��	������	�������

����
��	���	������	�������

� � � �
 �

� � � � � �

� � � � �

2 Create the output matrix by replacing each input pixel value with the
translated value nearest to it. The result is the following matrix:

0 0 1 2 3
0 0 4 5 6
0 0 7 8 9

Note You wanted to translate the image by 1.7 pixels, but this method
translated the image by 2 pixels. Nearest neighbor interpolation is
computationally efficient but not as accurate as bilinear or bicubic
interpolation.

Bilinear Interpolation
For bilinear interpolation, the block uses the weighted average of two
translated pixel values for each output pixel value.

For example, suppose this matrix,

1 2 3
4 5 6
7 8 9

6-3

6 Geometric Transformation

represents your input image. You want to translate this image 0.5 pixel in
the positive horizontal direction using bilinear interpolation. The Translate
block’s bilinear interpolation algorithm is illustrated by the following steps:

1 Zero pad the input matrix and translate it by 0.5 pixel to the right.

� � � � � �
 � �

� � � � � � � � �

� 	
 � � � � �

�������	
������
��	������	�������

����
��	���	������	�������

2 Create the output matrix by replacing each input pixel value with the
weighted average of the translated values on either side. The result is
the following matrix where the output matrix has one more column than
the input matrix:

0 5 1 5 2 5 1 5
2 4 5 5 5 3

3 5 7 5 8 5 4 5

. . . .
. .

. . . .

Bicubic Interpolation
For bicubic interpolation, the block uses the weighted average of four
translated pixel values for each output pixel value.

For example, suppose this matrix,

1 2 3
4 5 6
7 8 9

6-4

Geometric Transformation Interpolation Methods

represents your input image. You want to translate this image 0.5 pixel in
the positive horizontal direction using bicubic interpolation. The Translate
block’s bicubic interpolation algorithm is illustrated by the following steps:

1 Zero pad the input matrix and translate it by 0.5 pixel to the right.

� � � � � � � �
 � � � �

� � � � � � � � � � � � �

� � � 	
 � � � � � � �

�������	

������
��	������	�������

����
��	���	������	�������

2 Create the output matrix by replacing each input pixel value with the
weighted average of the two translated values on either side. The result is
the following matrix where the output matrix has one more column than
the input matrix:

0 375 1 5 3 1 625
1 875 4 875 6 375 3 125
3 375 8 25 9 75 4 625

. . .

. . . .

. . . .

6-5

6 Geometric Transformation

Rotating an Image
You can use the Rotate block to rotate your image or video stream by a
specified angle. In this example, you learn how to use the Rotate block to
continuously rotate an image:

1 Define an RGB image in the MATLAB workspace. At the MATLAB
command prompt, type

I = checker_board;

I is a 100-by-100-by-3 array of double-precision values. Each plane of the
array represents the red, green, or blue color values of the image.

2 To view the image this matrix represents, at the MATLAB command
prompt, type

imshow(I)

3 Create a new Simulink model, and add to it the blocks shown in the
following table.

6-6

Rotating an Image

Block Library Quantity

Image From
Workspace

Video and Image Processing
Blockset > Sources

1

Rotate Video and Image Processing
Blockset > Geometric
Transformations

1

Video Viewer Video and Image Processing
Blockset > Sinks

2

Gain Simulink > Math Operations 1

Display Signal Processing Blockset >
Signal Processing Sinks

1

Counter Signal Processing Blockset >
Signal Management > Switches
and Counters

1

4 Position the blocks as shown in the following figure.

6-7

6 Geometric Transformation

You are now ready to set your block parameters by double-clicking the
blocks, modifying the block parameter values, and clicking OK.

5 Use the Image From Workspace block to import the RGB image from the
MATLAB workspace. On the Main pane, set the Value parameter to
I.Each plane of the array represents the red, green, or blue color values
of the image.

6 Use the Video Viewer block to display the original image. Accept the
default parameters.

The Video Viewer block automatically displays the original image in
the Video Viewer window when you run the model. Because the image
is represented by double-precision floating-point values, a value of 0
corresponds to black and a value of 1 corresponds to white.

6-8

Rotating an Image

7 Use the Rotate block to rotate the image. Set the block parameters as
follows:

• Rotation angle source = Input port

• Sine value computation method = Trigonometric function

The Angle port appears on the block. You use this port to input a steadily
increasing angle. Setting the Output size parameter to Expanded to fit
rotated input image ensures that the block does not crop the output.

6-9

6 Geometric Transformation

8 Use the Video Viewer1 block to display the rotating image. Accept the
default parameters.

9 Use the Counter block to create a steadily increasing angle. Set the block
parameters as follows:

• Count event = Free running

• Counter size = 16 bits

• Output = Count

• Clear the Reset input check box.

• Sample time = 1/30

The Counter block counts upward until it reaches the maximum value
that can be represented by 16 bits. Then, it starts again at zero. You can
view its output value on the Display block while the simulation is running.
You are using the Counter block from Signal Processing Blockset software
because its Count data type parameter enables you to specify the data
type of its output.

10 Use the Gain block to convert the output of the Counter block from degrees
to radians. Set the Gain parameter to pi/180.

11 Connect the blocks as shown in the following figure.

6-10

Rotating an Image

12 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = inf

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

13 Run the model.

The original image appears in the Video Viewer window.

6-11

6 Geometric Transformation

The rotating image appears in the Video Viewer1 window.

6-12

Rotating an Image

In this example, you used the Rotate block to continuously rotate your image.
For more information about this block, see the Rotate block reference page
in the Video and Image Processing Blockset Reference. For more information
about other geometric transformation blocks, see the Resize and Shear block
reference pages.

Note If you are on a Windows operating system, you can replace the Video
Viewer block with the To Video Display block, which supports code generation.

6-13

6 Geometric Transformation

Resizing an Image
You can use the Resize block to change the size of your image or video stream.
In this example, you learn how to use the Resize block to reduce the size
of an image:

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Video and Image Processing
Blockset > Sources

1

Resize Video and Image Processing
Blockset > Geometric
Transformations

1

Video Viewer Video and Image Processing
Blockset > Sinks

2

2 Position the blocks as shown in the following figure.

6-14

Resizing an Image

3 Use the Image From File block to import the intensity image. Set the File
name parameter to moon.tif. The tif file is a 537-by-358 matrix of 8-bit
unsigned integer values.

4 Use the Video Viewer block to display the original image. Accept the
default parameters.

The Video Viewer block automatically displays the original image in the
Video Viewer window when you run the model.

5 Use the Resize block to shrink the image. Set the Resize factor in %
parameter to 50.

6-15

6 Geometric Transformation

The Resize block shrinks the image to half its original size.

6 Use the Video Viewer1 block to display the modified image. Accept the
default parameters.

7 Connect the blocks as shown in the following figure.

6-16

Resizing an Image

8 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

9 Run the model.

The original image appears in the Video Viewer window.

6-17

6 Geometric Transformation

The reduced image appears in the Video Viewer1 window.

6-18

Resizing an Image

In this example, you used the Resize block to shrink an image. For more
information about this block, see the Resize block reference page in the Video
and Image Processing Blockset Reference. For more information about other
geometric transformation blocks, see the Rotate, Shear, and Translate block
reference pages.

6-19

6 Geometric Transformation

Cropping an Image
You can use the Selector block to crop your image or video stream. In this
example, you learn how to use the Selector block to trim an image down to a
particular region of interest:

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Video and Image Processing
Blockset > Sources

1

Video Viewer Video and Image Processing
Blockset > Sinks

2

Selector Simulink > Signal Routing 1

2 Position the blocks as shown in the following figure.

6-20

Cropping an Image

3 Use the Image From File block to import the intensity image. Set the File
name parameter to coins.png. The image is a 246-by-300 matrix of 8-bit
unsigned integer values.

4 Use the Video Viewer block to display the original image. Accept the
default parameters.

The Video Viewer block automatically displays the original image in the
Video Viewer window when you run the model.

5 Use the Selector block to crop the image. Set the block parameters as
follows:

• Number of input dimensions = 2

• 1

– Index Option = Starting index (dialog)

– Index = 140

6-21

6 Geometric Transformation

– Output Size = 70

• 2

– Index Option = Starting index (dialog)

– Index = 200

– Output Size = 70

The Selector block starts at row 140 and column 200 of the image and
outputs the next 70 rows and columns of the image.

6 Use the Video Viewer1 block to display the cropped image.

The Video Viewer1 block automatically displays the modified image in the
Video Viewer window when you run the model.

7 Connect the blocks as shown in the following figure.

6-22

Cropping an Image

8 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

9 Run the model.

The original image appears in the Video Viewer window.

6-23

6 Geometric Transformation

The cropped image appears in the Video Viewer window. The following
image is shown at its true size.

6-24

Cropping an Image

In this example, you used the Selector block to crop an image. For more
information about the Selector block, see the Simulink documentation. For
information about the imcrop function, see the Image Processing Toolbox
documentation.

6-25

6 Geometric Transformation

6-26

7

Morphological Operations

• “Overview of Morphology” on page 7-2

• “Counting Objects in an Image” on page 7-3

• “Correcting for Nonuniform Illumination” on page 7-10

7 Morphological Operations

Overview of Morphology
Morphology is the study of the shape and form of objects. Morphological
image analysis can be used to perform

• Object extraction

• Image filtering operations, such as removal of small objects or noise from
an image

• Image segmentation operations, such as separating connected objects

• Measurement operations, such as texture analysis and shape description

The Video and Image Processing Blockset software contains blocks that
perform morphological operations such as erosion, dilation, opening, and
closing. Often, you need to use a combination of these blocks to perform your
morphological image analysis. Morphological image analysis can be used to
perform image filtering, image segmentation, and measurement operations.

The examples in this chapter show you how to use blocks from the
Morphological Operations library to count the number of objects in an image
and how to correct for uneven illumination.

For more information, see “Morphological Operations” in the Image Processing
Toolbox documentation.

7-2

Counting Objects in an Image

Counting Objects in an Image
In this example, you import an intensity image of a wheel from the MATLAB
workspace and convert it to binary. Then, using the Opening and Label blocks,
you count the number of spokes in the wheel. You can use similar techniques
to count objects in other intensity images. However, you might need to use
additional morphological operators and different structuring elements:

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Video and Image Processing
Blockset > Sources

1

Opening Video and Image Processing
Blockset > Morphological
Operations

1

Label Video and Image Processing
Blockset > Morphological
Operations

1

Video Viewer Video and Image Processing
Blockset > Sinks

2

Constant Simulink > Sources 1

Relational Operator Simulink > Logic and Bit
Operations

1

Display Signal Processing Blockset > Signal
Processing Sinks

1

2 Position the blocks as shown in the following figure. The unconnected ports
disappear when you set block parameters.

7-3

7 Morphological Operations

You are now ready to set your block parameters by double-clicking the
blocks, modifying the block parameter values, and clicking OK.

3 Use the Image From File block to import your image. Set the File name
parameter to testpat1.png. This is a 256-by-256 matrix image of 8-bit
unsigned integers.

4 Use the Constant block to define a threshold value for the Relational
Operator block. Set the Constant value parameter to 200.

5 Use the Video Viewer block to view the original image. Accept the default
parameters.

6 Use the Relational Operator block to perform a thresholding operation
that converts your intensity image to a binary image. Set the Relational
Operator parameter to <.

If the input to the Relational Operator block is less than 200, its output is
1; otherwise, its output is 0. You must threshold your intensity image
because the Label block expects binary input. Also, the objects it counts
must be white.

7 Use the Opening block to separate the spokes from the rim and from each
other at the center of the wheel. Use the default parameters.

7-4

Counting Objects in an Image

The strel function creates a circular STREL object with a radius of 5
pixels. When working with the Opening block, pick a STREL object that
fits within the objects you want to keep. It often takes experimentation to
find the neighborhood or STREL object that best suits your application.

8 Use the Video Viewer1 block to view the opened image. Accept the default
parameters.

9 Use the Label block to count the number of spokes in the input image. Set
the Output parameter to Number of labels.

7-5

7 Morphological Operations

10 The Display block displays the number of spokes in the input image. Use
the default parameters.

11 Connect the block as shown in the following figure.

7-6

Counting Objects in an Image

12 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = discrete (no continuous states)

13 Run the model.

The original image appears in the Video Viewer1 window. To view the
image at its true size, right-click the window and select Set Display To
True Size.

7-7

7 Morphological Operations

The opened image appears in the Video Viewer window. The following
image is shown at its true size.

As you can see in the preceding figure, the spokes are now separate white
objects. In the model, the Display block correctly indicates that there are
24 distinct spokes.

7-8

Counting Objects in an Image

You have used the Opening and Label blocks to count the number of spokes in
an image. For more information about these blocks, see the Opening and Label
block reference pages in the Video and Image Processing Blockset Reference. If
you want to send the number of spokes to the MATLAB workspace, use the
To Workspace block in Simulink or the Signal to Workspace block in Signal
Processing Blockset. For more information about STREL objects, see strel
in the Image Processing Toolbox documentation.

7-9

7 Morphological Operations

Correcting for Nonuniform Illumination
Global threshold techniques, which are often the first step in object
measurement, cannot be applied to unevenly illuminated images. To correct
this problem, you can change the lighting conditions and take another picture,
or you can use morphological operators to even out the lighting in the image.
Once you have corrected for nonuniform illumination, you can pick a global
threshold that delineates every object from the background. In this topic, you
use the Opening block to correct for uneven lighting in an intensity image:

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Video and Image Processing
Blockset > Sources

1

Opening Video and Image Processing
Blockset > Morphological
Operations

1

Video Viewer Video and Image Processing
Blockset > Sinks

4

Constant Simulink > Sources 1

Sum Simulink > Math Operations 2

Data Type Conversion Simulink > Signal Attributes 1

2 Position the blocks as shown in the following figure.

7-10

Correcting for Nonuniform Illumination

Once you have assembled the blocks required to correct for uneven
illumination, you need to set your block parameters. To do this, double-click
the blocks, modify the block parameter values, and click OK.

3 Use the Image From File block to import the intensity image. Set the File
name parameter to rice.png. This image is a 256-by-256 matrix of 8-bit
unsigned integer values.

4 Use the Video Viewer block to view the original image. Accept the default
parameters.

5 Use the Opening block to estimate the background of the image.
Set the Neighborhood or structuring element parameter to
strel('disk',15).

7-11

7 Morphological Operations

The strel function creates a circular STREL object with a radius of 15
pixels. When working with the Opening block, pick a STREL object that
fits within the objects you want to keep. It often takes experimentation to
find the neighborhood or STREL object that best suits your application.

6 Use the Video Viewer1 block to view the background estimated by the
Opening block. Accept the default parameters.

7 Use the first Sum block to subtract the estimated background from the
original image. Set the block parameters as follows:

• Icon shape = rectangular

• List of signs = -+

8 Use the Video Viewer2 block to view the result of subtracting the
background from the original image. Accept the default parameters.

9 Use the Constant block to define an offset value. Set the Constant value
parameter to 80.

10 Use the Data Type Conversion block to convert the offset value to an 8-bit
unsigned integer. Set the Output data type mode parameter to uint8.

7-12

Correcting for Nonuniform Illumination

11 Use the second Sum block to lighten the image so that it has the same
brightness as the original image. Set the block parameters as follows:

• Icon shape = rectangular

• List of signs = ++

12 Use the Video Viewer3 block to view the corrected image. Accept the
default parameters.

13 Connect the blocks as shown in the following figure.

14 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = discrete (no continuous states)

7-13

7 Morphological Operations

15 Run the model.

The original image appears in the Video Viewer window.

The estimated background appears in the Video Viewer1 window.

7-14

Correcting for Nonuniform Illumination

The image without the estimated background appears in the Video Viewer2
window.

7-15

7 Morphological Operations

The preceding image is too dark. The Constant block provides an offset
value that you used to brighten the image.

The corrected image, which has even lighting, appears in the Video Viewer3
window. The following image is shown at its true size.

7-16

Correcting for Nonuniform Illumination

In this section, you have used the Opening block to remove irregular
illumination from an image. For more information about this block, see the
Opening block reference page in the Video and Image Processing Blockset
Reference. For related information, see the Top-hat block reference page. For
more information about STREL objects, see the strel function in the Image
Processing Toolbox documentation.

7-17

7 Morphological Operations

7-18

8

Example Applications

• “Pattern Matching” on page 8-2

• “Motion Compensation” on page 8-10

• “Image Compression” on page 8-12

8 Example Applications

Pattern Matching

In this section...

“Overview of Pattern Matching” on page 8-2

“Tracking an Object Using Correlation” on page 8-2

Overview of Pattern Matching
Pattern matching can be used to recognize and/or locate specific objects in
an image. It can be accomplished using several techniques, one of which is
correlation. Correlation provides a direct measure of the similarity between
two images. Though sensitive to the scaling or rotation of objects, normalized
correlation is robust to changes in lighting.

Tracking an Object Using Correlation
In this example, you use the 2-D Correlation, Maximum, and Draw Shapes
blocks to find and indicate the location of a sculpture in each video frame:

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Read Binary File Video and Image Processing
Blockset > Sources

1

Image Data Type
Conversion

Video and Image Processing
Blockset > Conversions

1

Image From File Video and Image Processing
Blockset > Sources

1

2-D Correlation Video and Image Processing
Blockset > Statistics

1

Maximum Video and Image Processing
Blockset > Statistics

1

Draw Shapes Video and Image Processing
Blockset > Text & Graphics

1

8-2

Pattern Matching

Block Library Quantity

Video Viewer Video and Image Processing
Blockset > Sinks

1

Data Type Conversion Simulink > Signal Attributes 1

Constant Simulink > Sources 1

Mux Simulink > Signal Routing 1

2 Position the blocks as shown in the following figure.

You are now ready to set your block parameters by double-clicking the
blocks, modifying the block parameter values, and clicking OK.

3 Use the Read Binary File block to import a binary file into the model. Set
the block parameters as follows:

• File name = cat_video.bin

• Four character code = GREY

• Number of times to play file = inf

• Sample time = 1/30

8-3

8 Example Applications

4 Use the Image Data Type Conversion block to convert the data type of the
video to single-precision floating point. Accept the default parameter.

5 Use the Image From File block to import the image of the cat sculpture,
which is the object you want to track. Set the block parameters as follows:

• Main pane, File name = cat_target.png

• Data Types pane, Output data type = single

6 Use the 2-D Correlation block to determine the portion of each video frame
that best matches the image of the cat sculpture. Set the block parameters
as follows:

• Output size = Valid

• Select the Normalized output check box.

8-4

Pattern Matching

Because you chose Valid for the Output size parameter, the block
outputs only those parts of the correlation that are computed without the
zero-padded edges of any input.

7 Use the Maximum block to find the index of the maximum value in each
input matrix. Set the Mode parameter to Index.

The block outputs the zero-based location of the maximum value as a
two-element vector of 32-bit unsigned integers at the Idx port.

8 Use the Data Type Conversion block to change the index values from 32-bit
unsigned integers to single-precision floating-point values. Set the Output
data type parameter to single.

8-5

8 Example Applications

9 Use the Constant block to define the size of the image of the cat sculpture.
Set the Constant value parameter to single([41 41]).

10 Use the Mux block to concatenate the location of the maximum value and
the size of the image of the cat sculpture into a single vector. You use this
vector to define a rectangular region of interest (ROI) that you pass to the
Draw Shapes block.

11 Use the Draw Shapes block to draw a rectangle around the portion of each
video frame that best matches the image of the cat sculpture. Accept the
default parameters.

12 Use the Video Viewer block to display the video stream with the ROI
displayed on it. Accept the default parameters.

The Video Viewer block automatically displays the video in the Video
Viewer window when you run the model. Because the image is represented

8-6

Pattern Matching

by single-precision floating-point values, a value of 0 corresponds to black
and a value of 1 corresponds to white.

13 Connect the blocks as shown in the following figure.

14 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = inf

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

15 Run the simulation.

The video is displayed in the Video Viewer window and a rectangular
box appears around the cat sculpture. To view the video at its true size,
right-click the window and select Set Display To True Size.

8-7

8 Example Applications

As the video plays, you can watch the rectangular ROI follow the sculpture
as it moves.

8-8

Pattern Matching

In this example, you used the 2-D Correlation, 2-D Maximum, and Draw
Shapes blocks to track the motion of an object in a video stream. For more
information about these blocks, see the 2-D Correlation, Maximum, and Draw
Shapes block reference pages in the Video and Image Processing Blockset
Reference.

Note This example model does not provide an indication of whether or not
the sculpture is present in each video frame. For an example of this type of
model, type vippattern at the MATLAB command prompt.

8-9

8 Example Applications

Motion Compensation
Motion compensation is a set of techniques that take advantage of redundancy
in consecutive video frames. These techniques are used in video processing
applications such as video compression and video stabilization. For both of
these applications, motion compensation is a two-step process of detection and
compensation. The detection step results in the specification of a motion
vector that relates two consecutive video frames. For video compression, the
compensation step involves using the motion vector to predict the current
video frame from the previous frame and encoding the prediction residual.
For video stabilization, the compensation step involves translating the
current frame in the opposite direction of the motion vector to stabilize the
video sequence.

The Video and Image Processing Blockset software contains a video
compression demo model that you can open by typing vipcodec at the
MATLAB command prompt.

8-10

Motion Compensation

This demo model detects motion by analyzing how much objects move between
consecutive video frames. The model aligns two sequential video frames,
subtracts them, and codes the residual.

The Video and Image Processing Blockset software also contains a video
stabilization demo model that you can open by typing vipstabilize at the
MATLAB command prompt.

The demo illustrates a motion stabilization technique based on the sum of
absolute differences (SAD) method. It applies the SAD technique to remove
unwanted translational camera motions and generate a stabilized video.

8-11

8 Example Applications

Image Compression

In this section...

“Overview of Image Compression” on page 8-12

“Compressing an Image” on page 8-12

“Viewing the Compressed Image” on page 8-18

Overview of Image Compression
The following sections use a two-part example to show how to build a
Simulink model that is capable of image compression. In the first part of the
example, the input image is divided into blocks and the two-dimensional DCT
is computed for each block. The DCT coefficients are then quantized, coded,
and transmitted. The receiver in the second part of the example decodes
the quantized DCT coefficients, computes the inverse two-dimensional DCT
of each block, and then puts the blocks back together into a single image.
Although there is some loss of quality in the reconstructed image, it is
recognizable as an approximation of the original image.

Compressing an Image
You can use image compression to reduce the size of an image before you
transmit it. The compressed image retains many of the original image’s
features but requires less bandwidth. In this topic, you use the 2-D DCT and
Selector blocks to compress an intensity image:

1 Create a new Simulink model, and add to it the blocks shown in the
following table.

Block Library Quantity

Image From File Video and Image Processing
Blockset > Sources

1

Block Processing Video and Image Processing
Blockset > Utilities

2

Video Viewer Video and Image Processing
Blockset > Sinks

2

8-12

Image Compression

2 Position the blocks as shown in the following figure.

You are now ready to set your block parameters by double-clicking the
blocks, modifying the block parameter values, and clicking OK.

3 Use the Image From File block to import the intensity image into your
model. Set the block parameters as follows:

• Main pane, File name = cameraman.tif

• Data Types pane, Output data type = double

4 Use the Video Viewer block to view the original intensity image. This
image is a 256-by-256 matrix of 8-bit unsigned integer values. Accept the
default parameters.

5 The first Block Processing block represents the transmission portion of
the block diagram. This block sends 8-by-8 submatrices of the original
matrix to the block’s subsystem for processing. Use this block when you
want to perform block-based processing on large input images. To view the
subsystem, double-click the block and click Open Subsystem.

8-13

8 Example Applications

The Block Processing block’s subsystem opens.

8-14

Image Compression

You can drag blocks into this subsystem to process the submatrices.

6 Add the following blocks to your subsystem.

Block Library Quantity

2-D DCT Video and Image Processing
Blockset > Transforms

1

Selector Simulink > Signal Routing 1

7 Connect the blocks as shown in the following figure.

8-15

8 Example Applications

8 The 2-D DCT block takes the two-dimensional DCT of each submatrix. This
process puts most of the energy in the image into the upper left corner of
the resulting matrix. Use the default parameters.

9 Use the Selector block to extract the upper left corner of the submatrix.
Set the block parameters as follows:

• Number of input dimensions = 2

• Index mode = Zero-based

• 1

– Index Option = Starting index (dialog)

– Index = 0

– Output Size = 4

• 2

– Index Option = Starting index (dialog)

– Index = 0

– Output Size = 4

8-16

Image Compression

You are using the Selector block to compress the image by extracting
the upper left corner of the submatrix, which contains the high energy
image coefficients. You want to transmit only this portion of the submatrix
because it requires less bandwidth than transmitting the entire submatrix.

10 Close the subsystem and the Block Processing dialog box.

You have now configured the Block Processing and 2-D DCT blocks to
compress an image for transmission. In “Viewing the Compressed Image” on
page 8-18, you use the 2-D IDCT block to transform the image back to the
time domain. Then, you view the compressed image.

8-17

8 Example Applications

Viewing the Compressed Image
In “Compressing an Image” on page 8-12, you compressed an image using
the 2-D DCT and Selector blocks. Now, you can use the 2-D IDCT block to
transform the image back to the time domain and view the result:

1 If you have not already done so, set the Image From File block to import
the intensity image into your model. Set the block parameters as follows:

• Main pane, File name = cameraman.tif

• Data Types pane, Output data type = double

2 If the model you created in “Compressing an Image” on page 8-12 is not
open on your desktop, you can open an equivalent model by typing

doc_compressing_an_image

at the MATLAB command prompt.

3 Use the Block Processing1 block to set the size of the submatrices that the
block passes to the subsystem. Set the Block size parameter to {[4 4]}.

8-18

Image Compression

4 Open the block’s subsystem by clicking Open Subsystem, and add the
following blocks to it.

Block Library Quantity

Image Pad Video and Image Processing
Blockset > Utilities

1

2-D IDCT Video and Image Processing
Blockset > Transforms

1

8-19

8 Example Applications

5 Connect the blocks as shown in the following figure.

6 Use the Image Pad block to zero pad the 4-by-4 submatrix back to its
original 8-by-8 size. Set the block parameters as follows:

• Pad rows at = Right

• Pad size along rows = 4

• Pad columns at = Bottom

• Pad size along columns = 4

8-20

Image Compression

8-21

8 Example Applications

Because zeros are replacing the low energy transform coefficients, the
output image is an approximation of the original image.

7 The 2-D IDCT block takes the inverse two-dimensional DCT of the
submatrices. Accept the default parameters.

8 Close the subsystem and the Block Processing1 dialog box.

9 Use the Video Viewer1 block to view the compressed image. Accept the
default parameters.

10 Connect the blocks as shown in the following figure.

11 Set the configuration parameters. Open the Configuration dialog box by
selecting Configuration Parameters from the Simulation menu. Set
the parameters as follows:

• Solver pane, Stop time = 0

• Solver pane, Type = Fixed-step

• Solver pane, Solver = Discrete (no continuous states)

12 Run the model.

8-22

Image Compression

The original image is displayed in the Video Viewer window.

The compressed image is displayed in the Video Viewer1 window. The
compressed image is not as clear as the original image. However, it still
contains many of its features.

8-23

8 Example Applications

In this example, you used the 2-D DCT, Image Pad 2-D IDCT, and Block
Processing blocks to compress an image. For more information on these
blocks, see the 2-D DCT, Image Pad, 2-D IDCT, and Block Processing block
reference pages in the Video and Image Processing Blockset Reference. For
information on the Selector block, see the Simulink documentation. For
more information on sharpening an image, see “Sharpening and Blurring an
Image” on page 4-30.

8-24

9

Getting Started with
System Objects

• “What Are System Objects?” on page 9-2

• “Setting Up and Running System Objects” on page 9-3

• “Using System Objects with the Embedded MATLAB Subset” on page 9-9

9 Getting Started with System Objects

What Are System Objects?
System objects are MATLAB object-oriented implementations of algorithms.
They extend MATLAB by enabling you to model dynamic systems represented
by time-varying algorithms. System objects are well integrated into the
MATLABlanguage, regardless of whether you are writing simple functions,
working interactively in the command window, or creating large applications.

In contrast to MATLAB functions, System objects automatically manage
state information, data indexing, and buffering, which is particularly useful
for iterative or stream data processing. This enables efficient processing of
long data sets. System objects support fixed-point arithmetic and C-code
generation from MATLAB and Simulink. With System objects, you can
optionally generate code to target the desktop or external hardware. System
objects are part of the Embedded MATLAB® subset, and therefore can be used
in Simulink® models via the Embedded MATLAB function block.

9-2

Setting Up and Running System Objects

Setting Up and Running System Objects

In this section...

“Creating an Instance of a System Object” on page 9-3

“Using Methods to Run System Objects ” on page 9-6

“Finding Help and Demos for System Objects” on page 9-8

Creating an Instance of a System Object
You must create an instance of a System object before using it. You can
create the object at the MATLAB command line or within a program file.
The general syntax for creating an instance of a System object with default
property values is:

<handleName> = <packagename>.<ObjectName>

where:

• handleName is a MATLAB variable that holds the handle pointing to
the created object. System objects are handle objects and follow handle
semantics (e.g., when you call a method using the handle, it affects the
original object, not a copy of that object). See “The Handle Superclass” for
information on handle objects.See “Value or Handle Class — Which to Use”
in the MATLAB user documentation for information on object handles.

• packagename is the package that contains the particular object. Packages
are libraries of System objects. For example, these packages implement
object versions of associated algorithms.

- signalblks – a package that corresponds to the Signal Processing
Blockset

- video – a package that corresponds to the Video and Image Processing
Blockset

• ObjectName is the particular object in the package.

This example creates a digital filter object, with default property values,
from the signalblks package:

9-3

9 Getting Started with System Objects

h = signalblks.DigitalFilter

Your command-line code and programs can pass MATLAB variables into and
out of System objects.

Understanding System Object Modes
System objects are in one of two modes: unlocked or locked. After you create
an instance of an object and until it starts processing data, that object is in
unlocked mode. You can change any of its properties as desired.

When the object begins processing data, it initializes and is locked. When
the object is locked, you cannot change the number of inputs or outputs
or the value of any nontunable property. You also cannot change the input
data type, dimensions, or complexity of any tunable or nontunable property.
These restrictions allow the object to maintain states and allocate memory
appropriately. The typical way in which an object becomes locked is when
the step method is called on that object. See “Changing Properties While
Running System Objects” on page 9-5 for information on tunable and
nontunable properties.

Viewing System Object Properties
System objects have properties that configure the object. You use the default
values or set each property to a specific value. The combination of a property
and its value is referred to as a property-value pair. You can display the list
of relevant properties and their current values for an object by using the
object handle only, <handleName>. Some properties are relevant only when
you set another property or properties to particular values. If a property
is not relevant, it does not display.

To display a particular property value, use the handle of the created object
followed by the property name: <handleName>.<propertyName>.

The following code gets the TransferFunction property value for the
previously created DigitalFilter object:

h.TransferFunction

9-4

Setting Up and Running System Objects

Setting System Object Property Values
You set the property values of a System object to model the desired algorithm.
To set a property when you first create the object, use property-value pair
syntax. For properties that allow a specific set of string values, you can use
tab completion to select from a list of valid values.

<handleName> = <packageName>.<objectName>(property1,value1,...
property2,value2...)

h1 = signalblks.DigitalFilter('TransferFunction','FIR (all zeros)')

To set a property after you create an object, use either of the following
syntaxes:

<handleName>.<propertyName> = <propertyValue>

h1.TransferFunction = 'FIR (all zeros)'

or

set(<handleName>,<propertyName>,<propertyValue>)

set(h1,'TransferFunction','FIR (all zeros)'

You can enter property-value pairs in any order, except if you are using
value-only inputs. Some object properties have no useful default values or are
specified every time you create an instance of an object. For these properties,
you can specify only the value without specifying the corresponding property
name.

If you use value-only inputs, those inputs must be in a specific order.
Refer to the object reference page for details. For example, h2 =
signalblks.FIRDecimator(3,fir1(20,0.5)) specifies the decimation
factor as 3 and the numerator as fir1(20,0.5).

Changing Properties While Running System Objects
When an object is in locked mode, it is processing data and you can only
change the values of properties that are tunable. To determine if a particular
System object property is tunable, see the corresponding reference page or
use help.<packageName>.<objectName>.<propertyName>. For information

9-5

9 Getting Started with System Objects

on locked and unlocked modes, see “Understanding System Object Modes”
on page 9-4.

For most objects, if you change a nontunable property while the object is
in locked mode, the object unlocks, loses its state information, and stops
processing. For a locked object, if you change the data type, dimensions
or complexity of an input or tunable property, the object reinitializes the
next time you call the step method. See the object’s reference page for more
information.

Using Methods to Run System Objects
After you create a System object, you use various object methods to obtain
information from the object or have it process data. As an extension of
MATLAB classes, most System objects include a standardized set of methods.
Some of these methods only apply to particular objects (see “Common Methods
” on page 9-7). All methods that are applicable to an object are described in
the reference pages for that object.

System object method names begin with a lowercase letter and class and
property names begin with an uppercase letter. The syntax for using methods
is <methodName>(<handleName>).

Understanding the Advantages of Using Methods
System objects use two commands to process data—a constructor to create
the object and a method to run data through the object. This separation of
declaration from execution lets you create multiple, persistent, reusable
instances of an object, each with different settings. Using this approach
avoids repeated input validation and verification, allows for easy use within a
programming loop, and improves overall performance. MATLAB functions
must validate parameters every time you call the function.

These advantages make System objects particularly well suited for processing
streaming data, where segments of a continuous data stream are processed
iteratively. This ability to process streaming data provides the advantage of
not having to hold large amounts of data in memory. Use of streaming data
also allows you to use simplified programs that use loops efficiently.

9-6

Setting Up and Running System Objects

Common Methods
System objects support the following methods, each of which is described in a
method reference page associated with the object. In cases where a method
is not applicable to a particular object, calling that method has no effect on
the object.

• step – Initializes needed resources, processes inputs to the object based on
the current object states and properties, returns outputs, and updates the
object states. After you call the step method, you cannot change any input
specifications (i.e., dimensions, data type, complexity). During execution,
you can change only tunable properties. The step method returns regular
MATLAB variables.

Note For System objects that perform calculations on data (and not just
rearrange data), if you pass non-floating point data into that object, it
outputs a fixed-point numeric fi object, even if you specify the output data
type to be to same as the input data type.

When you create a source object, you specify whether step processes the
data as samples or as frames. If the object is a source, step produces
outputs but has no inputs. If the object is a sink, step requires inputs,
but produces no outputs. For all other objects, step has both inputs and
outputs, [out1,...,outN] = step(h,in1,...,inM).

• reset – Resets the internal states of the object to the initial values for
that object.

• getNumInputs – Returns the number of inputs expected by the step method.
This number varies for an object depending on whether any properties
enable additional inputs.

• getNumOutputs – Returns the number of outputs from the step method.
This number varies for an object depending on whether any properties
enable additional outputs.

• isDone – Applies only to source objects with end-of-data capability. isDone
returns logical true when the most recent step call reaches the end-of-data
state. This method returns false if either end-of-data is not reached or if
the source object does not have end-of-data capability

9-7

9 Getting Started with System Objects

• close – Applies to sink and source objects only. close releases any special
resources allocated by the object, such as file handles and device drivers.

Finding Help and Demos for System Objects
Refer to the following resources for more information about System objects:

• help <packagename> – Lists all System objects in the package, organized
by category.

• help <packagename>.<ObjectName>— Displays help for the object.

• doc <packagename>.<ObjectName> – Displays the reference page for the
object, including its properties.

• help <packageName>.<ObjectName>.<PropertyName> – Displays help
for the property

• help <packageName>.<ObjectName>.helpFixedPoint – Displays a list of
fixed–point properties for the object.

• help <packagename>.<ObjectName>.<methodName> – Displays the
method reference page for the object.

• Demos – Provides System object related demos. To view demos, go to online
Help contents for the associated product blockset. Under Demos, select
MATLAB demos.

• Object-Oriented Programming in the MATLAB user documentation –
Provides general information about working with objects.

9-8

Using System Objects with the Embedded MATLAB Subset

Using System Objects with the Embedded MATLAB Subset

In this section...

“Considerations for Using System Objects with the Embedded MATLAB
Subset” on page 9-9

“Using System Objects with Embedded MATLAB Coder” on page 9-11

“Using System Objects with the Embedded MATLAB Function Block” on
page 9-12

“Using System Objects with Embedded MATLAB MEX” on page 9-12

Considerations for Using System Objects with the
Embedded MATLAB Subset
You can use System objects in code generated using the Embedded MATLAB
subset, which is part of the MATLAB language. To generate code, you must
also have Simulinkand Real-Time Workshop products.Embedded MATLAB
lets you generate efficient code for deployment in embedded systems. It also
accelerates fixed-point algorithms. System objects support code generation
using the Embedded MATLAB function block in Simulink and using the
Embedded MATLAB coder function.

For general information on using Embedded MATLAB, see

• Working with the Embedded MATLAB Subset.

• Embedded MATLAB Getting Started Guide.

• Real-Time Workshop Embedded Coder Getting Started Guide.

You can customize your generated code by using a configuration object, which
is described in “Configuring Your Environment for Code Generation”.

The following example, which uses System objects, shows the key factors to
consider when you write MATLAB code to be generated using Embedded
MATLAB.

function lmssystemidentification
% LMSSYSTEMIDENTIFICATION System identification using

9-9

9 Getting Started with System Objects

% LMS adaptive filter
%#eml

% Declare System objects as persistent to generate code
% using Embedded MATLAB.

persistent hlms hfilt;

% Initialize persistent System objects in Embedded MATLAB
% only once. Do this with 'if isempty(persistent variable).'
% This condition will be false after the first time.

if isempty(hlms)

% Create LMS adaptive filter used for system
% identification. Pass property value arguments
% as constructor arguments. Property values must
% be constants during compile time.

hlms = signalblks.LMSFilter(11, 'StepSize', 0.01);

% Create system (an FIR filter) to be identified.

hfilt = signalblks.DigitalFilter(...
'TransferFunction', 'FIR (all zeros)', ...
'Numerator', fir1(10, .25));

end

x = randn(1000,1); % Input signal
d = step(hfilt, x) + 0.01*randn(1000,1); % Desired signal
[~,~,w] = step(hlms, x, d); % Filter weights

% Declare functions called into MATLAB that do not generate
% code as extrinsic.

eml.extrinsic('stem');

stem([get(hfilt, 'Numerator').', w]);
end

9-10

Using System Objects with the Embedded MATLAB Subset

% To compile this function use emlc lmssystemidentification.
% This produces a mex file with the same name in the current
% directory.

Review the following considerations when you create code that includes
System objects for use with the Embedded MATLAB subset .

• Assign System objects to persistent variables.

• Initialize System objects once by embedding the object handles in an if
statement with a call to isempty().

• Call the constructor exactly once for any instance of a System object.

• Arguments to System object constructors must be compile-time constants.

• Use the object constructor to set System object properties because
Embedded MATLAB does not allow you to use dot notation. Do not set any
properties during code generation. You can use get to display properties.

• Set System object properties using parameter-value pairs only. Do not
use value-only inputs.

• Ensure that input to a System object is consistent with the object size,
type, and complexity.

• Do not set System objects to become outputs from the Embedded MATLAB
function block or from a MEX function generated by Embedded MATLAB.

• Do not pass a System object as an example input argument to a function
being compiled with Embedded MATLAB Coder.

• Do not pass a System object from within Embedded MATLAB to functions
declared as extrinsic (i.e., functions called in interpreted mode) using
eml.extrinsic. Do not return System objects from any extrinsic functions.

Using System Objects with Embedded MATLAB Coder
Embedded MATLAB Coder (emlc) is a Real-Time Workshop function that
converts MATLAB code into C-code. You can include System objects in a
MATLAB program in the same way you include any other program elements.
For more information on Embedded MATLAB Coder, see “Converting
MATLAB Code to C/C++ Code” and “Generating C Code Using emlc”.

9-11

9 Getting Started with System Objects

Using System Objects with the Embedded MATLAB
Function Block
Using the Embedded MATLAB Function block, you can include a MATLAB
language function in a Simulink model. This model can then generate
embeddable code using the Embedded MATLAB subset. You can include any
System object in the Embedded MATLAB function block. System objects
provide higher level algorithms for code generation than do most associated
blockset blocks. For more information about the Embedded MATLAB
Function block, see Using the Embedded MATLAB Function Block and
the Embedded MATLAB Function block reference page in the Simulink
documentation.

Using System Objects with Embedded MATLAB MEX
You can use System objects with Embedded MATLAB MEX (emlmex), which
is particularly useful if you are using System objects that include fixed-point
support. emlmex converts MATLAB code to C-MEX code which is optimized
specifically to accelerate fixed-point algorithms to compiled C-code speed.
For more information, see “Working with Embedded MATLAB MEX” in the
Embedded MATLAB language subset documentation.

9-12

10

Using Video and Image
Processing System Objects

• “What Are Video and Image Processing System Objects?” on page 10-2

• “Generating Code for Video and Image Processing System Objects” on page
10-3

• “Working with Fixed-Point Data” on page 10-5

• “Example: Using System Objects in Video and Image Processing
Applications: Marking a Region of Interest” on page 10-9

10 Using Video and Image Processing System Objects

What Are Video and Image Processing System Objects?
Video and image processing System objects are object-oriented
implementations of video and image processing algorithms. This set of
System objects is organized in a single package, video. Many of these objects
correspond to block algorithms in the Video and Image Processing Blockset. A
key difference between blocks and System objects is that you include blocks
in Simulink models whereas you include System objects in programs or
MATLAB command-line code.

Video and image processing System objects provide these advantages.

• Support for code generation of algorithms in MATLAB (see “Generating
Code for Video and Image Processing System Objects” on page 10-3).

• Additional support for fixed-point-capable algorithms in MATLAB (see
“Working with Fixed-Point Data” on page 10-5).

Information in the following topics applies to System objects. These topics
refer to models and blocks, but the information and concepts apply to System
objects, too.

• Chapter 2, “Importing and Exporting Images and Video” – batch processing,
live video, and multimedia files

• Chapter 3, “Viewing Video” – video files and video file frames

• Chapter 8, “Example Applications” — pattern matching, motion
compression, and image compression

10-2

Generating Code for Video and Image Processing System Objects

Generating Code for Video and Image Processing System
Objects

These video and image processing System objects support code generation in
MATLAB via Embedded MATLAB Coder (emlc), which requires Simulink
and Real-Time Workshop. See “Using System Objects with the Embedded
MATLAB Subset” on page 9-9 for information on generating code.

Video and Image Processing Code Generation Support

video.AlphaBlender
video.Autocorrelator2D
video.Autothresholder
video.BlobAnalysis
video.ChromaResampler
video.ColorSpaceConverter
video.ConnectedComponentLabeler
video.Convolver2D
video.Crosscorrelator2D
video.DCT2D
video.Deinterlacer
video.DemosaicInterpolator
video.EdgeDetector
video.GammaCorrector
video.GeometricRotator
video.GeometricTranslator
video.Histogram2D
video.HistogramEqualizer
video.HoughTransform
video.IDCT2D
video.ImageComplementer
video.ImageDataTypeConverter
video.LocalMaximaFinder
video.MarkerInserter
video.Maximum
video.Mean
video.Median

10-3

10 Using Video and Image Processing System Objects

video.Minimum
video.MorphologicalClose
video.MorphologicalDilate
video.MorphologicalErode
video.MorphologicalOpen
video.PSNR
video.Pyramid
video.ShapeInserter
video.StandardDeviation
video.TraceBoundaries
video.Variance

10-4

Working with Fixed-Point Data

Working with Fixed-Point Data

Working with Fixed-Point Data

• “Getting Information About Fixed-Point System Objects” on page 10-5

• “Displaying Fixed-Point Properties” on page 10-6

• “Setting System Object Fixed-Point Properties” on page 10-7

Getting Information About Fixed-Point System Objects
General information about using fixed-point data processing is in “Working
with Fixed-Point Data” in the Signal Processing Blockset documentation.
System objects that support fixed-point data processing have fixed-point
properties, which you can display for a particular object by typing
video.<ObjectName>.helpFixedPoint at the command line.

See “Displaying Fixed-Point Properties” on page 10-6 to set the display of
System object fixed-point properties.

The following video and image processing System objects support fixed-point
data processing.

Video and Image Processing Fixed-Point Data Processing Support

video.AlphaBlender
video.Autocorrelator2D
video.Autothresholder
video.BlobAnalysis
video.BlockMatcher
video.ContrastAdjuster
video.Convolver2D
video.CornerDetector
video.Crosscorrelator2D
video.DCT2D
video.Deinterlacer
video.DemosaicInterpolator
video.EdgeDetector
video.FFT2D

10-5

10 Using Video and Image Processing System Objects

video.GeometricRotator
video.GeometricScaler
video.GeometricTranslator
video.Histogram2D
video.HoughLines
video.HoughTransform
video.IDCT2D
video.IFFT2D
video.ImageDataTypeConverter
video.ImageFilter
video.MarkerInserter
video.Maximum
video.Mean
video.Median
video.MedianFilter2D
video.Minimum
video.OpticalFlow
video.PSNR
video.Pyramid
video.SAD
video.ShapeInserter
video.Variance

Displaying Fixed-Point Properties
You can control whether the software displays fixed-point properties with
either of the following commands:

• matlab.system.ShowFixedPointProperties

• matlab.system.HideFixedPointProperties

at the MATLAB command line. These commands set the Show fixed-point
properties display option. You can also set the display option directly via the
MATLAB preferences dialog box. Select File > Preferences on the MATLAB
desktop, and then select System Objects. Finally, select or deselect Show
fixed-point properties.

10-6

Working with Fixed-Point Data

If an object supports fixed-point data processing, its fixed-point properties are
active regardless of whether they are displayed or not.

Setting System Object Fixed-Point Properties
A number of properties affect the fixed-point data processing used by a
System object. Objects perform fixed-point processing and use the current
fixed-point property settings when they receive fixed-point input.

You change the values of fixed-point properties in the same way as you change
any System object property value. See “Setting System Object Property

10-7

10 Using Video and Image Processing System Objects

Values” on page 9-5. You also use the Fixed-Point Toolbox™numerictype
object to specify the desired data type as fixed-point, the signedness, and the
word- and fraction-lengths.

In the same way as for blocks, the data type properties of many System
objects can set the appropriate word lengths and scalings automatically by
inheriting via the internal rule (see “Inherit via Internal Rule” for how this
rule applies to different types of blocks and objects).

In most cases, if you have not set the property that activates a dependent
property and you attempt to change that dependent property, a warning
message displays. As a convenience, if you set a dependent, fixed-point,
Custom<xxx>DataType property before setting the <xxx>DataType property,
the System object automatically sets <xxx>DataType for you to activate
the dependent property. <xxx> differs for each object. For example, for
the video.EdgeDetector object, setting CustomProductDataType to
numerictype(1,16,15) automatically sets ProductDataType to 'Custom'.

10-8

Example: Using System Objects in Video and Image Processing Applications: Marking a Region of Interest

Example: Using System Objects in Video and Image
Processing Applications: Marking a Region of Interest

The following example shows you how to define a region of interest (ROI)
using System objects to draw a green rectangle on a video stream.

1 Create a MultimediaFileReader System object and, set its properties.

This System object enables you to work with video data from an AVI file.

At the MATLAB command line, type the following code:

hVideoIn = video.MultimediaFileReader

The MultimediaFileReader System Component exists in both Signal
Processing Blockset and Video and Image Processing Blockset software.
The difference between them, are the default settings for video or audio
file formats.

2 Create a ShapeInserter System object to draw a green rectangle on the
video.

At the MATLAB command line, type the following code:

hRect = video.ShapeInserter;
hRect.BorderColor = 'Custom';
hRect.CustomBorderColor = [0 1 0];

3 Create a DeployableVideoPlayer System object so you can see the result
of your processing. In this example, the System object sends the video to
your default video device and places the video window near the center of
your screen.

At the MATLAB command line, type the following code:

hVideoOut = video.DeployableVideoPlayer;
hVideoOut.WindowLocation = [400 400];

10-9

10 Using Video and Image Processing System Objects

Note The DeployableVideoPlayer System object is only supported on
Windows platforms.

After you create all your System objects, use them to annotate your video data
by calling them within a processing loop. The following code is an example
of a processing loop:

pts = [10 5 80 90];

while ~isDone(hVideoIn)
% Get video data from the file, and store the data
% in the variable videoData.
videoData = step(hVideoIn);

% Add the rectangle to the video, and send it to the display.
imageRect = step(hRect, videoData, pts);
step(hVideoOut, imageRect);

end

% Close the file, free memory and release the video device
close(hVideoIn);
close(hVideoOut);

The step method takes the input to each System object and computes an
output. It also updates the System object states. In the last two lines, the
close method releases the file handles and the hardware connections.

The Deployable Video Player window displays the resulting video. The last
frame of the video appears in the following figure.

10-10

Example: Using System Objects in Video and Image Processing Applications: Marking a Region of Interest

After you set up the basic example, you can try either of the following
tasks:

• Changing the tunable parameters

• Making the rectangle move around the video display

10-11

10 Using Video and Image Processing System Objects

10-12

Index

IndexA
Accelerator mode 1-28
adding periodic noise to a signal 4-45
adjusting

intensity image contrast 4-54
RGB image contrast 4-61

Adobe Acrobat Reader 1-12
algorithms

bicubic interpolation 6-4
bilinear interpolation 6-3
nearest neighbor interpolation 6-2

angles
rotation 6-6

annotating
AVI files 2-22

arrays
interpretation of 1-15

artifacts
in an image 4-45

audio
exporting to multimedia file 2-38

Autothreshold block
to perform thresholding 5-7

AVI files
annotating 2-22
cropping 2-30
exporting 2-18
importing 2-14
saving to multiple files 2-30
splitting 2-30
viewing 2-14

B
background

estimation 7-10
pixels 4-2
user’s expected 1-12

batch processing 2-2
bicubic interpolation 6-4

bilinear interpolation 6-3
binary

conversion from intensity 5-2
images 1-15

blurring images 4-30
Boolean matrices 1-15
boundaries

of objects 4-2
boundary artifacts 4-45
brightening images 7-10

C
capabilities of

Video and Image Processing Blockset
software 1-2

changing
image size 6-14
intensity image contrast 4-54
RGB image contrast 4-61

chapter descriptions 1-13
chroma components

of images 5-19
chroma resampling 5-19
chrominance resampling 5-19
close method 9-8
code generation

video and image processing objects 10-3
codecs

supported by Microsoft Windows Media
Player 2-8

color
definition of 1-16

color space conversion 5-14
colormaps 1-16
column-major format 1-26
compensation

for motion 8-10
compression

of images 8-12

Index-1

Index

of video 8-10
concepts

description of 1-15
Configuration dialog box 1-26
continuous rotation 6-6
contrast

increasing 2-11
controlling video duration 1-27
conventions

column-major format 1-26
conversion

color space 5-14
intensity to binary 5-2
R’G’B’ to intensity 5-14

correction
of uneven lighting 7-10

correlation
used in object tracking 8-2

counting objects 7-3
cropping

AVI files 2-30
images 6-20

D
data type support 1-33
data types 1-16
definition of

intensity and color 1-16
demos

in the Help browser 1-5
on MATLAB Central 1-10
on the Web 1-9
Periodic noise reduction 4-45
Video compression 8-10
Video stabilization 8-10

dependencies
on Windows dynamic libraries 1-31

detection of
edges 4-2

lines 4-9
dilation 7-2
DirectX 2-8
dlls

dependencies on 1-31
documentation

on the Web 1-11
on your system 1-11
PDF 1-12
printing 1-12
viewing 1-11

downsampling
chroma components 5-19

DVD installation 1-3
dynamic range 1-16

E
edge

pixels 4-2
thinning 4-2

edge detection 4-2
electrical interference 4-45
erosion 7-2
estimation

of image background 7-10
executables

running 1-31
exporting

AVI files 2-18
multimedia files 2-11

F
feature extraction

finding angles between lines 4-18
finding edges 4-2
finding lines 4-9

filtering
median 4-39

Index-2

Index

operations 7-2
finding

angles between lines 4-18
edges of objects 4-2
histograms of images 4-73
lines in images 4-9

fixed point
System object preferences 10-6
System object processing 10-5

fixed point properties
System objects 10-7

form of objects 7-2
frequency distribution

of elements in an image 4-73
fspecial function 4-30

G
gamma correction 5-14
geometric transformation 6-1
getNumInputs method 9-7
getNumOutputs method 9-7
gradient components

of images 4-2

H
Help browser

demos 1-5
documentation 1-11

histograms
of images 4-73

I
image compression 8-12
image credits 1-34
image data

storage of 1-26
image rotation 6-6
image sequence processing 2-2

image types 1-15
images

binary 1-15
boundary artifacts 4-45
brightening 7-10
correcting for uneven lighting 7-10
counting objects in 7-3
cropping 6-20
filtering of 7-2
finding angles between lines 4-18
finding edges in 4-2
finding histograms of 4-73
finding lines in 4-9
gradient components 4-2
intensity 1-16
intensity to binary conversion 5-2
labeling objects in 7-3
lightening 7-10
noisy 4-39
periodic noise removal 4-45
removing salt and pepper noise 4-39
resizing of 6-14
RGB 1-16
rotation of 6-6
segmentation of 7-2
sharpening and blurring 4-30
true-color 1-16
types of 1-15

importing
AVI files 2-14
multimedia files 2-8

improvement
of performance 1-28

increasing video contrast 2-11
installation

DVD 1-3
Video and Image Processing Blockset

software 1-3
Web download 1-3

intensity

Index-3

Index

conversion from R’G’B’ 5-14
conversion to binary 5-2
definition of 1-16
images 1-16

intensity images
adjusting the contrast of 4-54

interference
electrical 4-45

interpolation
bicubic 6-4
bilinear 6-3
examples 6-2
nearest neighbor 6-2
overview 6-2

interpretation of
matrices 1-15

irregular illumination 7-10
isDone method 9-7

K
key blockset concepts 1-15
knowledge

user’s expected 1-12

L
labeling objects 7-3
lightening images 7-10
location of

lines 4-9
object edges 4-2
objects in an image 8-2

locked vs. unlocked mode 9-4
luma components

applying highpass filter 4-30
applying lowpass filter 4-30
of images 5-19

luminance 5-19

M
matching

patterns in an image 8-2
MATLAB Central

demos 1-10
matrices

interpretation of 1-15
measurement operations 7-2
median filtering 4-39
methods

interpolation 6-2
sum of absolute differences (SAD) 8-10
thresholding 7-10

Microsoft Windows Media Player 2-8
modes

Normal and Accelerator 1-28
morphology 7-1

opening 7-3
overview 7-2
STREL object 7-3

motion compensation 8-10
motion detection 8-10
multimedia files

exporting 2-11
exporting audio and video 2-38
importing 2-8
viewing 2-8

N
nearest neighbor interpolation 6-2
noise

adding to a signal 4-45
noise removal

periodic 4-45
salt and pepper 4-39

nonuniform illumination
correcting for 7-10

Normal mode 1-28

Index-4

Index

O
object boundaries 4-2
object extraction 7-2
object tracking

using correlation 8-2
objects

delineating 7-10
location of 8-2

opening 7-3
operations

morphological 7-1
thresholding 5-2

organization of the chapters 1-13
overview of

documentation 1-13
interpolation 6-2
morphology 7-2
Video and Image Processing Blockset

software 1-2

P
padding 4-45
pattern matching 8-2
performance

improving 1-28
periodic noise

removal 4-45
preferences 10-6
printing

PDF documentation 1-12
processing

in real time 1-29
product demos 1-5
products

related 1-4
required 1-4

property values 9-5

R
R’B’G’

conversion to intensity 5-14
real-time processing 1-29
reception

of an RGB image 5-19
reconstruction

of images 8-12
reduction

of image size 6-14
region of interest

cropping to 6-20
delineating 10-9
System object example 10-9
visualizing 8-2

related products 1-4
relational operators

to perform thresholding 5-2
removal of

periodic noise 4-45
salt and pepper noise 4-39

required products 1-4
resampling

chroma 5-19
reset method 9-7
resizing

images 6-14
RGB images 1-16

adjusting the contrast of 4-61
rotation

continual 6-6
of an image 6-6

S
salt and pepper noise removal 4-39
sample time 1-26
saving

to multiple AVI files 2-30
scaling 1-16

Index-5

Index

data types 4-2
sectioning

AVI files 2-30
segmentation operations 7-2
sequence

of images 2-2
setting

configuration parameters 1-26
simulation time 1-27

shape of objects 7-2
sharpening images 4-30
shrinking

image size 6-14
simulation time 1-27
Simulink Solver 1-26
Sobel kernel 4-2
splitting

AVI files 2-30
stabilization

of video 8-10
step method 9-7
storage of image data 1-26
streaming data

using System objects 9-6
STREL object 7-3
sum of absolute differences (SAD) method 8-10
summary of morphology 7-2
System object

close method 9-8
code generation

video and image processing objects 10-3
creating an instance 9-3
description 9-2
fixed point 10-5

video and image processing objects 10-5
getNumInputs method 9-7
getNumOutputs method 9-7
isDone method 9-7
locked vs. unlocked mode 9-4

methods 9-6
preferences 10-6
properties 9-4
property values 9-5
reset method 9-7
step method 9-7
tunable property 9-5
using with Embedded MATLAB 9-9
value-only input 9-5
video and image processing 10-2
video and image processing example 10-9

T
techniques

motion compensation 8-10
sum of absolute differences (SAD) 8-10
thresholding 7-10

thresholding operation 5-2
with uneven lighting 5-7

thresholding techniques 7-10
tracking

of an object 8-2
transformation

geometric 6-1
transmission

of an RGB image 5-19
trimming

images 6-20
true size 2-14
true-color images 1-16
tunable 9-5
tutorials 1-13
types of images 1-15

U
uneven lighting

correcting for 7-10

Index-6

Index

V
value-only input 9-5
vectors

motion 8-10
video

adjusting display size 2-14
annotating AVI files at separate

locations 2-26
annotating AVI files with video frame

numbers 2-22
duration 1-27
exporting from AVI file 2-18
exporting from multimedia file 2-11
importing from AVI file 2-14
importing from multimedia file 2-8
increasing the contrast of 2-11
interpretation of 1-16
speed of 2-8
stabilization 8-10

video compression and stabilization 8-10
viewing

AVI files 2-14
compressed images 8-18
demos 1-5
documentation 1-11
multimedia files 2-8

vip_rt.dll 1-31

W
Web

demos 1-9
documentation 1-11
download 1-3

Windows dynamic libraries
dependencies on 1-31

Windows platforms 2-8

Index-7

	toc
	Getting Started
	Product Overview
	Installation
	Installing the Video and Image Processing Blockset Software
	Installation from a DVD
	Installation from a Web Download

	Required Products
	Related Products

	Product Demos
	Demos in the Help Browser
	Demos on the Web
	Demos on MATLAB Central

	Working with the Documentation
	Viewing the Documentation
	Documentation in the Help Browser
	Documentation on the Web

	Printing the Documentation
	Using This Guide
	Expected Background
	What Chapter Should I Read?

	Key Blockset Concepts
	Image Types
	Binary Images
	Intensity Images
	RGB Images

	Video in the Video and Image Processing Blockset Blocks
	Defining Intensity and Color
	Color Image Processing
	Coordinate Systems
	Pixel Coordinates
	Spatial Coordinates

	Image Data Stored in Column-Major Format
	Sample Time
	Video Duration and Simulation Time
	Acceleration Modes
	Strategies for Real-Time Video Processing
	Optimizing Your Implementation
	Developing Your Models

	Code Generation
	Shared Library Dependencies

	Block Data Type Support
	Image Credits

	Importing and Exporting Images and Video
	Batch Processing Image Files
	Working with Live Video
	Working with Multimedia Files
	Blocks That Support Multimedia Files
	Importing and Viewing Multimedia Files
	Exporting to Multimedia Files
	Working with AVI Files
	Importing and Viewing AVI Files
	Exporting to AVI Files
	Annotating AVI Files with Video Frame Numbers
	Annotating AVI Files at Two Separate Locations
	Saving Portions of an AVI File to Separate Files

	Working with Audio

	Working with MATLAB Workspace Variables
	How to Import MATLAB Workspace Variables

	Viewing Video
	Viewing Video Files
	Viewing Video Signals in Simulink
	Using the Video Viewer Block
	Using the To Video Display Block
	Using the MPlay GUI
	Connecting MPlay to Your Simulink Model
	MPlay GUI Interface
	Toolbar Buttons
	Playback Toolbar — Workspace and File Sources
	Playback Toolbar — Simulink Sources
	Configuration
	Configuration Core Pane
	Using the Keyboard commands respect playback modes
	Configuration Sources Pane
	Configuration Visuals Pane
	Configuration Tools Pane
	Video Information
	Color Map for Intensity Video
	Frame Rate
	Saving the Settings of Multiple MPlay GUIs
	Message Log
	Status Bar

	Viewing Video File Frames

	Analysis and Enhancement
	Feature Extraction
	Finding Edges in Images
	Finding Lines in Images
	Measuring an Angle Between Lines

	Image Enhancement
	Sharpening and Blurring an Image
	Removing Salt and Pepper Noise from Images
	Removing Periodic Noise from Video
	Adjusting the Contrast in Intensity Images
	Adjusting the Contrast in Color Images

	Template Matching
	Using the Template Matching Block
	Choosing an Output Option
	Input and Output Signal Sizes
	Defining the Region of Interest (ROI)
	Choosing a Match Metric
	Returning the Matrix of Match Metric Values
	Returning the Best Match Location
	Returning the Neighborhood Match Metric around the Best Match
	Choosing a Search Method
	Using the ROIValid and NValid flags for Diagnostics
	Video Stabilization
	Panorama Creation

	Pixel Statistics
	Blocks That Compute Pixel Statistics
	Finding the Histogram of an Image

	Conversions
	Intensity to Binary Conversion
	Overview of Intensity and Binary Images
	Thresholding Intensity Images Using Relational Operators
	Thresholding Intensity Images Using the Autothreshold Block

	Color Space Conversion
	Overview of Color Space Conversion Block
	Converting Color Information from R’G’B’ to Intensity

	Chroma Resampling

	Geometric Transformation
	Geometric Transformation Interpolation Methods
	Overview of Interpolation Methods
	Nearest Neighbor Interpolation
	Bilinear Interpolation
	Bicubic Interpolation

	Rotating an Image
	Resizing an Image
	Cropping an Image

	Morphological Operations
	Overview of Morphology
	Counting Objects in an Image
	Correcting for Nonuniform Illumination

	Example Applications
	Pattern Matching
	Overview of Pattern Matching
	Tracking an Object Using Correlation

	Motion Compensation
	Image Compression
	Overview of Image Compression
	Compressing an Image
	Viewing the Compressed Image

	Getting Started with System Objects
	What Are System Objects?
	Setting Up and Running System Objects
	Creating an Instance of a System Object
	Understanding System Object Modes
	Viewing System Object Properties
	Setting System Object Property Values
	Changing Properties While Running System Objects

	Using Methods to Run System Objects
	Understanding the Advantages of Using Methods
	Common Methods

	Finding Help and Demos for System Objects

	Using System Objects with the Embedded MATLAB Subset
	Considerations for Using System Objects with the Embedded MATLAB
	Using System Objects with Embedded MATLAB Coder
	Using System Objects with the Embedded MATLAB Function Block
	Using System Objects with Embedded MATLAB MEX

	Using Video and Image Processing System Objects
	What Are Video and Image Processing System Objects?
	Generating Code for Video and Image Processing System Objects
	Video and Image Processing Code Generation Support
	Working with Fixed-Point Data
	Working with Fixed-Point Data
	Getting Information About Fixed-Point System Objects
	Video and Image Processing Fixed-Point Data Processing Support
	Displaying Fixed-Point Properties
	Setting System Object Fixed-Point Properties

	Example: Using System Objects in Video and Image Processing Appl

	Index

